前回掲載したインテルの14nmプロセスの記事が予想外に反響があって驚いている。プロセスの話は今回からが本番。先端プロセスの話も後々出てくるが、その前に少し基本的なことのおさらいをしておきたい。

トランジスタベースのデジタル回路
電子回路には、アナログ回路とデジタル回路の2種類がある。両者の違いは、デジタル量で処理するか、アナログ量で処理するかである。デジタル量というのは0か1しかない。対してアナログ量は、連続した可変量を扱うことになる。
このデジタル量は、ブール代数と呼ばれる記号論理学を使って扱われることが多いが、今回はその話は後送りする。回路上で見ると、0~5Vの範囲で変動する電圧を持つ回路の場合、アナログ量だと0~5Vの範囲を連続する値として扱うのに対し、デジタル量ではどこかにしきい値を設けて、例えば2.5V以上ならそれを「1」、2.5V未満ならそれを「0」と扱う形になる※1。
※1:これは比喩であって、これでは2.5V付近で電圧がぐらついた時に値が0と1の間で激しく振動することになり、あまりよろしくない。実際は例えば1.5V以下を0、3.5V以上を1として、1.5~3.5Vの間は「不定」という扱いにする。
そのデジタル量を扱う部品がトランジスタである。トランジスタは1947年にアメリカのベル研究所で初めて半導体が発明されて以来、非常に広く利用されている。では、トランジスタはなにをするかというと、基本原理は「電流の増幅作用」である。
下の画像は非常にラフなトランジスタの模式図である。これはN型の半導体でP型の半導体をサンドイッチ構造にした、NPNタイプと呼ばれるものだ。

NPNタイプのトランジスタ模式図
NPNタイプは、「B(Base)からE(Emitter)に電流(ベース電流)を流すと、これに比例した電流(コレクター電流)がC(Collector)からEに流れる」という働きになる。図の右下が、このトランジスタを示す記号である。ちなみに図のN型半導体とP型半導体を逆にしたPNP型のトランジスタもある。
コレクター電流の大きさは、ベース電流の数十倍~数百倍にすることが可能で、「少ない電流で大電流を制御できる」という意味でこれを増幅作用と呼んでいる。
これがどうデジタル回路に関係してくるかというと、トランジスタを電流On/Offのスイッチとして使えるのである。つまり1ならスイッチOn(コレクター電流が流れる)、0ならOff(コレクター電流が流れない)といった実装になる。これを組み合わせてゆくことで、複雑なデジタル回路を構成してゆくというわけだ。
初期のデジタル回路やIC/LSIは全部この構成で実装されており、かつてはTTL(Transistor-Transistor Logic)と呼ばれるものが一般的だった。信号電圧は5Vで、TI(Texas Instruments)社が発売した7400シリーズは安価に入手できるTTL ICということで広く利用されていた。筆者も高校生の時分に作ったエレキーはTTL ICで構成した覚えがある。
このTTL ICにどのようなものがあったかは、英語で恐縮だがWikipediaの「List of 7400 series integrated circuits」(関連リンク)を見ていただいた方が早いだろう。
パッケージそのものは14~20ピン程度のプラスチックDIPパッケージで、ユニバーサル基板にDIPソケット経由などで簡単に配線できるうえ、ICそのものもそう高くなく、ウン十年前の高校生のポケットマネーで何とか買える程度だった。
初期のコンピューターの中には、本当にこのTTL ICを使って構成されていたものも少なくない。連載122回でAMDのRISCプロセッサー「Am2900」のご先祖様にあたる「Am2900」シリーズに触れたが、このAm2900シリーズは内部はともかく外部はTTLレベルで信号が出ていた。したがって、Am2900を使ってCPUボードを作る場合、周辺回路は必然的にTTL ICを使うことになった。
さらには、TTL ICを使ってCPUを作るという優雅な趣味もあり、「CPUの創りかた」という書籍がマイナビから刊行されている。現実問題として使い物になるかどうかはともかく、技術的にはまだTTL ICでもデジタル回路が構成できる。
■Amazon.co.jpで購入
-
CPUの創りかた渡波 郁(著)毎日コミュニケーションズ

この連載の記事
-
第820回
PC
LEDが半導体の救世主に? チップレット同士の接続を電気信号から光信号へ ISSCC 2025詳報 -
第819回
PC
次期Core UltraシリーズのPanther Lakeは今年後半に量産開始 インテル CPUロードマップ -
第818回
PC
DDRを併用し低価格・低消費電力を実現したAIプロセッサー「SN40L」 ISSCC 2025詳報 -
第817回
PC
実現困難と思われていたUCIe互換のチップレット間インターコネクトをTSMCとAMDが共同で発表 ISSCC 2025詳報 -
第816回
PC
シリコンインターポーザーを使わない限界の信号速度にチャレンジしたIBMのTelum II ISSCC 2025詳報 -
第815回
デジタル
3次キャッシュがスリムになっていたZen 5、ISSCCで公開された詳報 AMD CPUロードマップ -
第814回
PC
インテルがチップレット接続の標準化を画策、小さなチップレットを多数つなげて性能向上を目指す インテル CPUロードマップ -
第813回
PC
Granite Rapid-DことXeon 6 SoCを12製品発表、HCCとXCCの2種類が存在する インテル CPUロードマップ -
第812回
PC
2倍の帯域をほぼ同等の電力で実現するTSMCのHPC向け次世代SoIC IEDM 2024レポート -
第811回
PC
Panther Lakeを2025年後半、Nova Lakeを2026年に投入 インテル CPUロードマップ -
第810回
PC
2nmプロセスのN2がTSMCで今年量産開始 IEDM 2024レポート - この連載の一覧へ