ロードマップでわかる!当世プロセッサー事情 第563回
Ampere採用GPU「A100」発表、Titan Aが発売される可能性も NVIDIA GPUロードマップ
2020年05月18日 12時00分更新
製造プロセスはTSMCのN7
もう少し特徴を細かく説明したい。まずプロセス。以前はSamsungの7LPPであろう、という状況証拠を説明してきたわけだが、これを全部裏切ってなんとTSMCのN7での製造となった。そしてダイサイズは826mm2という、やや信じられないサイズである。
Samsungが7LPPプロセスで量産に入っているのは間違いない。というのは、同社のGalaxy S20に搭載されているExynos 990がこの7LPPを使って製造されており、実際TechInsightがこれを解析、確かに7nmのEUVプロセスを利用して製造していることを確認している。
TechInsightの分析によれば、TSMCのN7と比較してトランジスタ/配線密度が高くなっていることが確認されており、その意味では素性はよさげである。ではなぜTSMCに切り替えたか?
可能性としてあるのは、100mm2程度のモバイル向けSoCはともかく、800mm2オーバーの巨大ダイが作れなかった(いや作れはするが、歩留まりが十分上がらなかった)というのが一番考えやすい。
本当は8GPC、64TPC、128SMで12ch(2chで1つ)のメモリーコントローラーを利用可能なのにも関わらず、実際に出荷されるA100は7GPC、54TPC、108SMに減らされ、メモリーも10chというのは、要するにそれだけ欠陥が多く、フルスペックでの出荷ができないという話である。わりと熟成が進んでいるTSMCのN7ですらこれだから、Samsungの7LPPはさらに厳しかったのだろう。
NVIDIAがDual Fab Strategy、つまりSamsungとTSMCの両方を使うという話は聞こえていたが、てっきり筆者は少なくとも最初の段階ではハイエンドをSamsung、バリュー向けをTSMCとすると考えていた。
理由は簡単でTSMCはすでに生産能力が逼迫しており、NVIDIAが希望する量の生産が難しいからだ。ところが実際には、おそらくGA100自身がSamsung版とTSMC版の両方の開発をほぼ同時に行ない、その結果としてSamsungが落とされるという結果になったようだ。なかなか壮絶な話ではある。
しかしこうなると、続くゲーミング向け、つまりTuringの後継になるGeForce RTX 3000シリーズもやはりTSMCの将来プロセス(N7P、あるいはN6あたり?)か、もしくはTSMCのN5になりそうである。
7nm世代の投入でAMDに大幅に遅れを取ったことを受けてか、NVIDIAはTSMCのN5に関して膨大な量の生産予約をすでに入れたという話も聞こえてきている(非公式な話なので正直どの程度かは不明だが)。
逆に言えば、N7を使う限り初期の生産量はかなり厳しく抑えられることになりそうで、このあたりNVIDIAがどういう方策を取ってくるのか興味あるところだが、いずれにせよ後継製品の投入は今年末~2021年あたりになりそうに思える。
スループットがVoltaより
FP16で5倍、FP32で20倍に高速化
次は演算性能の話だ。下の画像が示すように、SMの中のINT32/FP32/FP64ユニットの数そのものはVoltaと変わらない。したがって、性能差はSMの数×動作周波数ということになる。
大きく変わったのはTensor Coreである。Tensor Coreは端的に言えばSIMD演算エンジンのようなもので、扱える演算そのものはほぼ乗算と加算のみに限られる代わりに、高速かつ行列演算を簡単に扱える特徴がある。
GV100の場合は扱えるデータ型がFP16(16bit浮動小数点)とFP32(32bit浮動小数点)のみだったが、GA100ではこれに加えてBP16(BFloat16:塩田紳二氏の記事がわかりやすい)やFP64(64bit浮動小数点演算)、INT 4(4bit整数)/INT 8(8bit整数)/Binary(1bit整数)を取り扱えるようになったほか、スループットがFP16で5倍、FP32で20倍に高速化された。
ちなみにここに出てくるSparsityであるが、疎行列への対応である。疎行列というのは行列の成分のほとんどが0というケースである。例えば2行2列の行列の掛け算は下式のようになっている。
ここで、成分の半分が0の場合を考えると、下式のようになる。
さて、Sparsityをサポートしていない場合、律義に0×0やA1×0などの計算をするので、トータル8回の掛け算と4回の加算が必要で、しかもこのほとんどが0の掛け算や足し算である。
ところが0の掛け算と足し算はやるまでもなく0なので、これの計算を省くと必要なのはA1×B1とA4×B4の2つの掛け算のみで済む。この「要素が0の場合には計算を省く」というのがSparsityで、これにより大幅に高速化が可能になったというものだ。
加えると、AIのトレーニング向けにはそれなりに精度が必要とされるが、推論の方はそうでもない(この話は次週)こともあり、データの精度を落とした4bit Integerや、中にはBinary(1bit)のネットワークも使われるようになっている。
ただ従来のVoltaはこうしたものに対応していなかったので、FPGAなどが使われていたが、Ampereではこうしたものにも対応できるようになった、という話である。
これによってAI性能は、学習で3~6倍、推論で7倍に達していると説明されており、またHPC関連アプリケーションも1.5~2倍に高速化されるとする。
Ampereが、まずはPerlmutter向けに投入されることを考えると、これは重要なポイントである。
もう1つ、Volta世代から大きな進化を遂げたのがMIG(Multi-Instance GPU)である。特にデータセンターでの利用の場合、複数ユーザーでGPUを使うことも珍しくないのだが、従来ハードウェア的には1枚のGPUは1ユーザーでの占有という形になっていた。
これに対し、GA100ではGPC単位で異なるユーザーに割り当て、別のアプリケーションを走らせることが可能になっている。
この連載の記事
-
第803回
PC
トランジスタの当面の目標は電圧を0.3V未満に抑えつつ動作効率を5倍以上に引き上げること IEDM 2024レポート -
第802回
PC
16年間に渡り不可欠な存在であったISA Bus 消え去ったI/F史 -
第801回
PC
光インターコネクトで信号伝送の高速化を狙うインテル Hot Chips 2024で注目を浴びたオモシロCPU -
第800回
PC
プロセッサーから直接イーサネット信号を出せるBroadcomのCPO Hot Chips 2024で注目を浴びたオモシロCPU -
第799回
PC
世界最速に躍り出たスパコンEl Capitanはどうやって性能を改善したのか? 周波数は変えずにあるものを落とす -
第798回
PC
日本が開発したAIプロセッサーMN-Core 2 Hot Chips 2024で注目を浴びたオモシロCPU -
第797回
PC
わずか2年で完成させた韓国FuriosaAIのAIアクセラレーターRNGD Hot Chips 2024で注目を浴びたオモシロCPU -
第796回
PC
Metaが自社開発したAI推論用アクセラレーターMTIA v2 Hot Chips 2024で注目を浴びたオモシロCPU -
第795回
デジタル
AI性能を引き上げるInstinct MI325XとPensando Salina 400/Pollara 400がサーバーにインパクトをもたらす AMD CPUロードマップ -
第794回
デジタル
第5世代EPYCはMRDIMMをサポートしている? AMD CPUロードマップ -
第793回
PC
5nmの限界に早くもたどり着いてしまったWSE-3 Hot Chips 2024で注目を浴びたオモシロCPU - この連載の一覧へ