ロードマップでわかる!当世プロセッサー事情 第667回
HPですら実現できなかったメモリスタをあっさり実用化したベンチャー企業TetraMem AIプロセッサーの昨今
2022年05月16日 12時00分更新
今回はIntel Visionの話でも、と思ったのだがオンラインでの情報配信は5月18日からと発表の1週間遅れになっており、現時点では基調講演くらいしか説明する内容がないので後送りにさせていただき、AIプロセッサーの話をしよう。Linley Spring Processor Conference 2022で発表されたTetraMemのmemristor(メモリスタ)だ。
メインメモリーだけで演算処理を行なう高速化技術
In-Memory Computing
AI処理の効率化、というテーマでのアーキテクチャーの提案はいろいろあることについてはこれまでいくつか紹介してきたが、その1つにIn-Memory Computingがある。
要するにメモリーと演算器が別々に置かれており、かつ演算にあたっては「メモリーからデータを取り出す」「演算結果をデータに格納する」にそれぞれ無駄に消費電力がかかる(データの移動には相応の電力を要する)ので、昨今では演算処理そのものよりもデータ移動の方が消費電力が大きくなってしまっている。
ならば、メモリーと演算器を融合させて一体化してしまえば、無駄なデータ移動がなくなり省電力化できる=性能/消費電力比を大幅に向上できる、という仕組みだ。SamsungのHBM-PIM(連載606回と連載636回)はこの最右翼だし、連載591回で紹介したMythicもこれに近い。
ただSamsungのHBM-PIMは、物理的には近い(なにしろ演算器とDRAMが同じダイ上に混在している)とは言え、演算器とメモリーは別のブロックになっているので、かなりIn-Memory Computing「っぽい」とは言え、厳密には違う。
これに比べるとMythicはメモリー(NANDフラッシュ)をそのままアナログ計算機として利用するというアイディアで、こちらは真の意味でのIn-Memory Computingになっているのは間違いないが、NANDフラッシュを使うというあたりで製造プロセスに縛りが出てくることになる。
2018年に創業したばかりのTetraMem
すでに44の特許を出願し18が成立
ということで今回のTetraMemになる。こちらは2018年にフレモントで創業されたばかりの企業である。創業者はNing Ge博士で、STマイクロエレクトロニクスでマスターテクノロジストを12年務めたあと、2018年に同社を創業している。
ただ創業直後はまだ会社そのものもステルスモードになっており、オープンになったのはごく最近のことだ。同社は他にも創業者としてScientific Board Chief Advisorという肩書で南カルフォルニア大のJ. Joshua Yang教授と、Chief Process Advisorという肩書でマサチューセッツ大学アマースト校のQiangfei Xia教授が加わっている。
さらに2020年から同社にCTOとして参加するまでの間はニューヨーク州立大ビンガムトン校の助教だったMiao Hu博士も経営陣に加わっており、こうしたアドバイザーが同社の技術的なバックボーンになっているようだ。
ちなみに現時点での従業員はまだ20人に満たないようで、まだベンチャー企業の、しかもまだアーリーステージ扱いである。ただこの短い期間に同社はすでに44の特許を出願、うち18が成立しているなど、技術力そのものはかなり高いと推察される。
さてそのTetraMemの発想である。In-Memory Computingが特にAIなどでは効果的である、という話は冒頭でも触れた通りだ。

左の図は、扱うべきデータ量は毎年100倍、アルゴリズムの複雑さも毎年10倍の割合で増加しているのに、AIのハードウェアは年間2倍程度でしか強化されない(ムーアの法則では18ヵ月で2倍程度とさらに低い)ことで大きなギャップがあるとしている。
右側の、つまりCPUとメモリーが別々になった従来型の構成では、以下の問題が出てくる。
1. 従来型のアーキテクチャー、つまりノイマン型の構成ではデータの移動に消費電力の90%以上を費やすことになり、これが性能/消費電力比向上の妨げになっている。性能を上げようとしても、供給できる電力に限りがあるから、性能が上げきれないことになる。
2. CMOSの微細化がどんどん厳しくなり、10nm世代以降では微細化のペースが落ちている。ということは、大規模なプロセッサーをどんどん作り難くなる。
3. 1.と2.に絡んで、消費電力増大にともなう発熱がシステムの性能や規模を妨げることになる。
これを解決するための一番効率的な方法がIn-Memory Computingだというわけだ。もちろんこれはAIのような並列性の高いデータドリブンな処理だからこそ通用する話で、例えばWordの高速化にはまるで向かないわけだが。

この連載の記事
-
第812回
PC
2倍の帯域をほぼ同等の電力で実現するTSMCのHPC向け次世代SoIC IEDM 2024レポート -
第811回
PC
Panther Lakeを2025年後半、Nova Lakeを2026年に投入 インテル CPUロードマップ -
第810回
PC
2nmプロセスのN2がTSMCで今年量産開始 IEDM 2024レポート -
第809回
PC
銅配線をルテニウム配線に変えると抵抗を25%削減できる IEDM 2024レポート -
第808回
PC
酸化ハフニウム(HfO2)でフィンをカバーすると性能が改善、TMD半導体の実現に近づく IEDM 2024レポート -
第807回
PC
Core Ultra 200H/U/Sをあえて組み込み向けに投入するのはあの強敵に対抗するため インテル CPUロードマップ -
第806回
PC
トランジスタ最先端! RibbonFETに最適なゲート長とフィン厚が判明 IEDM 2024レポート -
第805回
PC
1万5000以上のチップレットを数分で構築する新技法SLTは従来比で100倍以上早い! IEDM 2024レポート -
第804回
PC
AI向けシステムの課題は電力とメモリーの膨大な消費量 IEDM 2024レポート -
第803回
PC
トランジスタの当面の目標は電圧を0.3V未満に抑えつつ動作効率を5倍以上に引き上げること IEDM 2024レポート -
第802回
PC
16年間に渡り不可欠な存在であったISA Bus 消え去ったI/F史 - この連載の一覧へ