配線のために生産ラインを再構成までした
MCM周り
MCM周りについてもいくつか説明があったので紹介しよう。下の画像がRyzen 3000シリーズの内部構成である。
連載496回で、「インフィニティーファブリックのコントローラーがI/Oチップレット側に移動すると、Zen 2内部の制御(それこそSenseMIなどがインフィニティーファブリックの上で実装されている)が遅くならないか?」というのが、CCXを8コアでないかと考えた最大の理由だったのだが、こちらにその回答が入っている。
図中でSMU(System Management Unit)とあるのが、そのインフィニティーファブリックを利用したSenseMIを始めとするさまざまなシステム管理を司る部分である。つまり以下のことがわかる。
- CCXは引き続き4コアベース
- CCD(つまりCPUチップレット)全体の制御は、CCD内のSMUが行なう。同様にcIoD(つまりI/Oチップレット)の制御は、cIoD内のSMUが行なう
構図としては連載496回で図解したZenベースのダイの内部ブロックに近いものになると考えられる。
ちなみに一見すると簡単そうに見えるが、実際はI/Oチップレットが従来と同じ150μmピッチのボール状バンプ(メッキで形成した突起状の接続電極)なのに対し、7nmプロセスを使ったCPUチップレットではこれが130μmピッチに狭まったそうだ。
これを解決するために、従来のように配線に直接バンプを構成するのではなく、銅で柱を立て、その上にバンプを形成するという解決案を取ったそうである。
またこのRyzen 3000では既報の通りPCI Express Gen4をサポートするが、16GT/秒に達する信号速度に対応するために、パッケージの材質を改善して損失を減らす工夫が必要だったそうである。
下の画像がそのパッケージ層の配線で、おそらくは一番信号線のレイヤーだと思われるが、中央下のI/Oチップレットとその上に2つ並ぶCPUチップレットの間を直結しているのがインフィニティーファブリックの配線、左側に出ているのがおそらくはDDR4、そしてI/Oチップレットの中央および右上から、パッケージの右側に出ているのがPCI Express Gen4の配線と思われる。
実装もいろいろ大変だったそうで、生産ラインを再構成する必要があったというのも無理ないところである。
ということで、今回はCPU周りを深く掘り下げて解説した。全然性能やラインナップの話まで行けなかったのだが、このあたりはRadeon RX 5700シリーズ周りのまだ触れてない話題と併せて次週紹介する予定だ。

この連載の記事
-
第812回
PC
2倍の帯域をほぼ同等の電力で実現するTSMCのHPC向け次世代SoIC IEDM 2024レポート -
第811回
PC
Panther Lakeを2025年後半、Nova Lakeを2026年に投入 インテル CPUロードマップ -
第810回
PC
2nmプロセスのN2がTSMCで今年量産開始 IEDM 2024レポート -
第809回
PC
銅配線をルテニウム配線に変えると抵抗を25%削減できる IEDM 2024レポート -
第808回
PC
酸化ハフニウム(HfO2)でフィンをカバーすると性能が改善、TMD半導体の実現に近づく IEDM 2024レポート -
第807回
PC
Core Ultra 200H/U/Sをあえて組み込み向けに投入するのはあの強敵に対抗するため インテル CPUロードマップ -
第806回
PC
トランジスタ最先端! RibbonFETに最適なゲート長とフィン厚が判明 IEDM 2024レポート -
第805回
PC
1万5000以上のチップレットを数分で構築する新技法SLTは従来比で100倍以上早い! IEDM 2024レポート -
第804回
PC
AI向けシステムの課題は電力とメモリーの膨大な消費量 IEDM 2024レポート -
第803回
PC
トランジスタの当面の目標は電圧を0.3V未満に抑えつつ動作効率を5倍以上に引き上げること IEDM 2024レポート -
第802回
PC
16年間に渡り不可欠な存在であったISA Bus 消え去ったI/F史 - この連載の一覧へ