大幅な性能改善に貢献した
チップレット周り
さて次がチップレットの話。Zen 2ではメモリーコントローラーはCPUダイから外れ、I/O チップレット側に移動したという話はすでに説明した通り。
ここでCPUチップレットとI/Oチップレットの間はインフィニティーファブリックで接続されるが、この帯域もまた32Bytes/サイクルである。これはメモリー帯域が32Bytes/サイクルなのでこれにあわせている。
ちなみにここでいうサイクルはCPUの動作周波数ではなく、インフィニティーファブリックの動作周波数になることに注意されたい(上の画像で言うところのfclk)。
さて、この構造はメリットも多い一方で性能面へのインパクトもある。Ryzen ThreadripperでDynamic Local Modeが用意されたのも、複数チップに分散したことに起因するボトルネックを緩和するための方法の1つであるが、Zen 2でもこうした配慮が用意される。
1つはTopology Awareness。たとえばあるコアで新規スレッドを作成したときに、その新規スレッドが別のCCDで動いたりすると、猛烈な量のアクセスが2つのCCDの間で発生してしまう。
これを防ぐため、同一プロセスに属するすべてのスレッドは、同じCOD(同じCCX)で動かすようにするという配慮がされる。これはハードウェア側の問題ではなく、OSのスケジューラーの問題である。
ちなみにこれは単にRyzen 9 3900シリーズのみならず、従来のRyzen系でも有効であり、Ryzen Threadripperでも有効である。
もう1つはClock Selectionである。ACPI 5.1でCPPC(Collaborative Processor Performance Controls)という機能が追加されており、これは2014年頃のCPUから広くサポートされるようになっているが、これを高速化したCPPC2という機能がACPI 6.0から追加になった。
Zen 2ではこのCPPC2をサポートした結果として、従来30ms程度要していたClock Selectionを1~2msまで短縮できたという話である。
ちなみにこの効果であるが、Topology Awarenessで15%の、CPPC2サポートで6%の性能改善が果たされた、としている。
ところで1ページ目のバッファ周りの画像で“Hardware-enhanced Security mitigation”という項目が上がっていたが、具体的な改善項目というのが下の画像だ。
もともとZen系列は、Spectre/Meltdownからスタートした一連の脆弱性に(インテルに比べると)特に対策なしで対応できるという強みがあったが、唯一OS周りの対策が必要だったSpectreに対してハードウェアでの対応を強化したという話である。

この連載の記事
- 第704回 自動運転に必要な車載チップを開発するフランスのVSORA AIプロセッサーの昨今
- 第703回 音声にターゲットを絞ったSyntiant AIプロセッサーの昨今
- 第702回 計52製品を発表したSapphire Rapidsの内部構造に新情報 インテル CPUロードマップ
- 第701回 性能が8倍に向上したデータセンター向けAPU「Instinct MI300」 AMD CPUロードマップ
- 第700回 インテルが10年先を見据えた最先端の半導体技術を発表 インテル CPUロードマップ
- 第699回 Foveros Directを2023年後半に出荷 インテル CPUロードマップ
- 第698回 ARA-2の開発を進める謎の会社Kinara AIプロセッサーの昨今
- 第697回 CPUとDSPを融合させたChimeraはまさに半導体のキメラだった AIプロセッサーの昨今
- 第696回 第4世代EPYCのGenoaとBergamoの違いはL3の容量 AMD CPUロードマップ
- 第695回 遅延が問題視されるSapphire Rapidsは今どうなっている? インテル CPUロードマップ
- 第694回 メモリー帯域を増やして性能を向上させたRDNA 3の内部構造 AMD GPUロードマップ
- この連載の一覧へ