前回はLunar Lakeのプロセスとタイル構造で話が終わってしまったので、今回はもう少し内部の話をしよう。
Lunar LakeはPコア4つとEコア4つの珍しい組み合わせ
まずは一番の要であるプロセッサーの構造である。Lunar LakeもPコアとEコアの組み合わせであり、その意味ではAlder Lake(Lakefield)以降で採用されているハイブリッド・テクノロジーを継承した構成である。ただそれが4+4という構成なのはやや珍しい。
もちろん技術的には可能であるのだが、Eコアが4つというのは、これまでの同社のプロセッサーからするとかなり少ないように感じる。おそらくはであるのだが、1つには次回説明するようにEコアの性能が大幅に上がり、性能的にバランスが取れると判断されたのかもしれないし、Eコアを8つにすると面積的に厳しかったのかもしれない。
だったらPコアの数を2つに減らせば良かったようにも思うのだが、ハイパースレッディングなしでの2コアはコア数というか同時処理スレッド数が不足すると判断されたのかもしれない。なんというか、微妙なバランスを取った構成になっている。
またMeteor Lakeで搭載されたI/Oタイル上のLow Power EコアはLunar Lakeでは省かれている。その代わりというべきか、EコアそのものがLow Power Configurationで構成されている。N6プロセス上のLP Eコアより、N3BのLP Eコアの方が消費電力が少なかったのかもしれない。結果としてパワーマネジメント系はMeteor Lakeとまったく異なるものになっている。
そのあたりの話はいずれ話をするとして、まずはPコアとEコアについて。今回PコアはLion Cove、EコアはSkymontと呼ばれるコアがそれぞれ採用されているが、このLion Cove/Skymont共に、従来のコアから大幅に中身が変わっている。
Alder LakeのGolden CoveからMeteor LakeのRedwood Coveまでは基本同一コアで Golden Cove→Raptor Cove(L2:1.25MB→2MB)→Golden Cove(L1 I-Cache:32KB→64KB) とキャッシュサイズの増量が主要な違い(細かなアップデートは除く)でしかない。
ということで、Alder Lakeに搭載されたGolden CoveとLion Coveを比較すると下表のように、猛烈に強化されているのがわかる。
Golden CoveとLion Coveの比較 | ||||||
---|---|---|---|---|---|---|
Decode | 6 wide→8 wide | |||||
MicroCode | 2 wide→4 wide | |||||
μOp Cache | 9 wide→12 wide | |||||
Issue | 12 port→18 port | |||||
ALU | 5 wide→6 wide | |||||
FPU | 3 wide→4 wide |
もう少し細かく見てみよう。まずフロントエンドであるがDecodeは1サイクルあたり8 x86命令を処理可能であり、μOp Cacheは最大12 wideまで拡張されている。以前の説明が正しければ、1つのx86命令は1つないし2つのμOpに分解されるので、μOp Cacheは最低でもx86換算で6命令/サイクル、平均しておそらく9命令/サイクル程度の供給が可能になると思われる。
次にIssue Port周りだが、そもそもポートの数が大幅に増やされ、かつ同時発行命令が増えたことに対応して内部バッファの容量(ROBやInstruction Windowなど)も増量されている。
実行ユニットに関して言えば、Golden CoveではPort 00/01/05をIntegerとVectorで共用、という形になっていたが今回これが分離された。これがスループット向上につながるか? というと、短期的にはNoである。
例えばAVX命令などで計算を行ない、その結果を格納するような処理では以下の形で処理される。
Vector→ALU→Vector→ALU→...
Vectorの処理が終わるまでALUが動くことはない。これはVectorの結果を取り込む、あるいは次の計算のためのパラメーターをレジスターにセットするから、Vectorの処理が終わってからでないと意味がないからで、ポートを共用していても別にそこがボトルネックになるわけではないし、ポートを分けても並列度が上がることはない。
しかし、これスケジューラーの方からすれば1つのポートにALUとVectorがつながっているのはスケジューリングが複雑になるだけだし、スライドにもあるように将来の拡張性を考えたらポートを分離した方が良い、という判断になったものと思われる。

この連載の記事
-
第821回
PC
IBMのMCAバスに対抗してAT互換機メーカー9社が共同で開発したEISA 消え去ったI/F史 -
第820回
PC
LEDが半導体の救世主に? チップレット同士の接続を電気信号から光信号へ ISSCC 2025詳報 -
第819回
PC
次期Core UltraシリーズのPanther Lakeは今年後半に量産開始 インテル CPUロードマップ -
第818回
PC
DDRを併用し低価格・低消費電力を実現したAIプロセッサー「SN40L」 ISSCC 2025詳報 -
第817回
PC
実現困難と思われていたUCIe互換のチップレット間インターコネクトをTSMCとAMDが共同で発表 ISSCC 2025詳報 -
第816回
PC
シリコンインターポーザーを使わない限界の信号速度にチャレンジしたIBMのTelum II ISSCC 2025詳報 -
第815回
デジタル
3次キャッシュがスリムになっていたZen 5、ISSCCで公開された詳報 AMD CPUロードマップ -
第814回
PC
インテルがチップレット接続の標準化を画策、小さなチップレットを多数つなげて性能向上を目指す インテル CPUロードマップ -
第813回
PC
Granite Rapid-DことXeon 6 SoCを12製品発表、HCCとXCCの2種類が存在する インテル CPUロードマップ -
第812回
PC
2倍の帯域をほぼ同等の電力で実現するTSMCのHPC向け次世代SoIC IEDM 2024レポート -
第811回
PC
Panther Lakeを2025年後半、Nova Lakeを2026年に投入 インテル CPUロードマップ - この連載の一覧へ