前回は、EUVでも普通に露光できるのは5nm世代まで、という話をした。今回は、ダブルパターニングとSculptaという新技法を解説しよう。
ちなみにTSMCはN5のプロセスジオメトリー(Contact Poly PitchやFin Pitchなど)を一切説明しておらず、ただN7世代と比較するとSRAMセル(HD:High Density)の寸法が0.78倍(0.021μm)になった、という数字のみを発表している。幸いにSamsungの5nm世代(5LPP:現在はSF5という名称になっている)の数字は公開されている。
| Samsung 5nm世代のプロセスジオメトリー | ||||||
|---|---|---|---|---|---|---|
| Contact Poly Pitch | 60nm(HP)/54nm(HD) | |||||
| Fin Pitch | 27nm | |||||
| M0 Pitch | 36nm | |||||
下の画像と比較してもらうとおおむねIntel 7に近いが、FinやM0はもう少し密度が高いという程度で、Intel 4にはやはりおよばないことがわかる。フィンの間隔などはそろそろEUVのシングルパターニングの限界に近いことがわかる。
そしてTSMCで言えばN3、Samsungで言えば旧3GAE(3nm GAA Early:現在はSF3A)以降、インテルのIntel 4以降ではもうシングルパターニングでは限界に達している。そこでダブルパターニングが登場することになった。
ここからはApplied Materialsの発表資料より。右の図で青が配線がある場所、白は配線がない場所である。2組のフィンの間隔が、シングルパターニングでは最小25~30nmなのに対し、ダブルパターニングでは15~20nmまで縮められるとする
EUV露光を2回実行する
ダブルパターニング
具体的にどうするか? であるが、例えば上の画像にも出てきた上下方向に並ぶフィンを貫くように縦方向に配線を構築するというケースでは、以下の工程で実装することになる。
(1) まずフィンを最初のEUV露光→エッチングで構築する。縦方向の配線は考えない。
(2) エッチングした溝を一旦金属で埋める。
(3) 2度目のEUV露光→エッチングで、今度は縦方向の溝を作る。
(4) (2)で埋めた余分な金属を取り除く。
これは穴を掘る場合も同じだ。DRAMやフラッシュでは深い穴を掘る必要があるが、それとは別にロジック向けでもVIA(貫通電極)向けに穴を構築する必要がしばしばある。
これはトランジスタと配線層、あるいは配線層同士の接続に使われるし、最近ではチップ同士の3D積層(AMDの3D V-Cacheなどこの最右翼だ)には膨大な数のTSV(シリコン貫通電極)が使われるから、高密度の穴開けが要求されることもある(*1)。
ただしEUVのシングルパターニングでは穴の直径はともかく、穴の間隔をそれほど詰められなかった。そこでダブルパターニングで2回に分けて穴を開けることで密度を高める方策がとられていた。要するに以下の工程になるわだ。
(1) まず白い穴を最初のEUV露光→エッチングで空ける。
(2) エッチングした溝を一旦金属で埋める。
(3) 2度目のEUV露光→エッチングで、今度は灰色の穴を空ける。
(4) (2)で埋めた余分な金属を取り除く。
この方式の問題はいろいろある。まず2回のEUV露光→エッチングの際に位置のずれがあると、それでアウトである。ダブルパターニングはArF(フッ化アルゴン)時代にはさんざん行なわれていた技術であるが、透過式マスクと反射式マスクではやり方が違うし、位置合わせの精度はArF時代よりもさらに厳しい。
またEUV露光を2回実施するので、それだけ消費電力(や薬品類)の消費も大きく、スループットもそれだけ落ちる。ということはウェハーコストの増大につながるわけだ。1回のダブルパターニングあたりおおむね70ドル程製造コストが上がる、というのがApplied Materialsの試算であるが、このダブルパターニングをどれだけする必要があるのか? というのが次の問題だ。
スループットに関しては、もうEUV露光機の数を増やすしか手が無いわけで、ざっくり言えばシングルパターニングの場合の倍の数のEUV露光機が必要になる。ただそこまでやってもリードタイムが倍になることそのものは変わらない
例えばTSMCのN3の場合、25回のEUV露光が必要で、しかもそのほとんどがダブルパターニングだった。ということは、仮に20回だとしても1400ドルほど原価が上がることになる。
N3Eは露光を19回に減らし、しかもシングルパターニングで済むようにプロセスジオメトリーを変更したことで、大幅に製造難易度とコストを下げたことで広く採用されるようになったことを考えると、できればEUVのダブルパターニングは避けたいという意向が働くのは無理もない。
ただN3Eはともかく、今後登場する予定のTSMCのN3P/N3X/N2やSamsungのSF3(旧3GAP:2024年量産開始予定)、Intel 3/20A/18Aなどではダブルパターニングの利用は避けられないと見られていた。
(*1) 3D積層用のTSVは、現在は双方のダイの熱などに起因する歪みに対応する「遊び」を確保するために、あまり高密度での実装にはなっていない。ただ今はともかく今後も密度が低いままか? というのはまた別の話である。

この連載の記事
-
第852回
PC
Google最新TPU「Ironwood」は前世代比4.7倍の性能向上かつ160Wの低消費電力で圧倒的省エネを実現 -
第851回
PC
Instinct MI400/MI500登場でAI/HPC向けGPUはどう変わる? CoWoS-L採用の詳細も判明 AMD GPUロードマップ -
第850回
デジタル
Zen 6+Zen 6c、そしてZen 7へ! EPYCは256コアへ向かう AMD CPUロードマップ -
第849回
PC
d-MatrixのAIプロセッサーCorsairはNVIDIA GB200に匹敵する性能を600Wの消費電力で実現 -
第848回
PC
消えたTofinoの残響 Intel IPU E2200がつなぐイーサネットの未来 -
第847回
PC
国産プロセッサーのPEZY-SC4sが消費電力わずか212Wで高効率99.2%を記録! 次世代省電力チップの決定版に王手 -
第846回
PC
Eコア288基の次世代Xeon「Clearwater Forest」に見る効率設計の極意 インテル CPUロードマップ -
第845回
PC
最大256MB共有キャッシュ対応で大規模処理も快適! Cuzcoが実現する高性能・拡張自在なRISC-Vプロセッサーの秘密 -
第844回
PC
耐量子暗号対応でセキュリティ強化! IBMのPower11が叶えた高信頼性と高速AI推論 -
第843回
PC
NVIDIAとインテルの協業発表によりGB10のCPUをx86に置き換えた新世代AIチップが登場する? -
第842回
PC
双方向8Tbps伝送の次世代光インターコネクト! AyarLabsのTeraPHYがもたらす革新的光通信の詳細 - この連載の一覧へ














