プロセッサーパイプラインそのもののIPCは
Alder Lakeと同一
そのRaptor Lakeであるが、Intel Innovationなどでも「シングルスレッドで15%、マルチスレッドで41%の性能向上が実現」という数字が出ていた。その内訳が下の画像だ。
実はRaptor LakeもコアそのものはAlder Lakeとほとんど同じ、というかAlder LakeのGolden CoveとRaptor LakeのRaptor Coveは、事実上同一に近いらしい。
もちろんエラッターの修正などは行なわれているだろうから、完全に同一というわけではないし、後述するようにコア外部の変更はいろいろあるが、CPUパイプラインそのものの変更はZen 3→Zen 4よりもさらに少なく、事実上同じとしてみて良さそうである。
それにもかかわらず性能が伸びたのはなぜか? というと、シングルスレッドで一番大きいのが動作周波数の向上で、次がキャッシュの大容量化、最後がメモリーの高速化である。そしてマルチスレッドではスレッド動作そのものの変更が最大の性能向上要因となっている。
まずプロセスについて。上で書いたようにRaptor LakeではIntel 7プロセスそのものが小変更された。あくまでも「小」変更というところがミソで、実際Dan Rogers氏(Senior Director, Mobile Product Marketing)に「なにをいじったの? 構造? 材質? それともジオメトリ?」と突っ込んだものの、明確に「なにをどう変更したか」の答えはなく、その代わり「(結果として)よりチャネルの(電荷の)移動量が大幅に増えた」という返答が戻ってきた。
このIntel 7と改良型Intel 7を比較した場合、以下のようになる。
- 最大動作周波数は5.2GHz→5.8GHzで600MHz向上
- 同じ5.2GHz動作なら50mVコア電圧を下げられる
- 同じコア電圧なら200MHz動作周波数を引き上げられる
実際Alder LakeベースのCore i9-12900KとRaptor LakeベースのCore i9-13900Kを比較した場合、それぞれ1割程度の動作周波数向上が見られる(Base Frequencyだけはむしろ下がっているが)。
| 上の画像に掲載されていないオレゴン担当のプロセッサー | ||||||
|---|---|---|---|---|---|---|
| 年号 | Core i9-12900K | Core i9-13900K | ||||
| Max Turbo Frequency | 5.2GHz | 5.8GHz | ||||
| Turbo Boost Max Technology 3.0 Frequency | 5.2GHz | 5.7GHz | ||||
| Performance-core Max Turbo Frequency | 5.1GHz | 5.4GHz | ||||
| Performance-core Base Frequency | 3.2GHz | 3.0GHz | ||||
| Efficient-core Max Turbo Frequency | 3.9GHz | 4.3GHz | ||||
| Efficient-core Base Frequency | 2.4GHz | 2.2GHz | ||||
もっと興味深いのはこちらの下のスライドだ。241W駆動時のCore i9-12900Kと、65W駆動時のCore i9-13900Kは、ほぼ同等の性能になる、というものだ。
そこから50W増やして115W駆動にすると21%性能向上、176W増やして241Wにすると37%向上する、188W増やして253Wにすると41%向上するというものだが、なんというか筆者だったらこれは間違いなく65W固定で動作させたくなる。
消費電力を3.9倍まで増やしても性能が41%しか上がらない、というあたりが昨今のプロセッサーの最大の問題ではあると思うのだが、もちろん売る側としては「性能が変わらずに消費電力を176W落としました」よりも「消費電力が同じで37%性能が上がりました」の方が売りやすいわけで、性能の伸びは明白とは言え、やや複雑な心境になってしまった。
ちなみにDan Rogers氏によれば、“BIOS SettingでConfigurable TDPを設定して65W動作は可能だし、今後はよりTDPの低いSKUの投入も予定している”とのことで、筆者などにはこうした使い方のほうがありがたい気がする。

この連載の記事
-
第852回
PC
Google最新TPU「Ironwood」は前世代比4.7倍の性能向上かつ160Wの低消費電力で圧倒的省エネを実現 -
第851回
PC
Instinct MI400/MI500登場でAI/HPC向けGPUはどう変わる? CoWoS-L採用の詳細も判明 AMD GPUロードマップ -
第850回
デジタル
Zen 6+Zen 6c、そしてZen 7へ! EPYCは256コアへ向かう AMD CPUロードマップ -
第849回
PC
d-MatrixのAIプロセッサーCorsairはNVIDIA GB200に匹敵する性能を600Wの消費電力で実現 -
第848回
PC
消えたTofinoの残響 Intel IPU E2200がつなぐイーサネットの未来 -
第847回
PC
国産プロセッサーのPEZY-SC4sが消費電力わずか212Wで高効率99.2%を記録! 次世代省電力チップの決定版に王手 -
第846回
PC
Eコア288基の次世代Xeon「Clearwater Forest」に見る効率設計の極意 インテル CPUロードマップ -
第845回
PC
最大256MB共有キャッシュ対応で大規模処理も快適! Cuzcoが実現する高性能・拡張自在なRISC-Vプロセッサーの秘密 -
第844回
PC
耐量子暗号対応でセキュリティ強化! IBMのPower11が叶えた高信頼性と高速AI推論 -
第843回
PC
NVIDIAとインテルの協業発表によりGB10のCPUをx86に置き換えた新世代AIチップが登場する? -
第842回
PC
双方向8Tbps伝送の次世代光インターコネクト! AyarLabsのTeraPHYがもたらす革新的光通信の詳細 - この連載の一覧へ














