2種類のプロセッサーを搭載するAiOnIc
肝心のAIプロセッサーであるが、なんとAiOnIcは2種類のプロセッサーを搭載している。もともと、“RISC-V w/SMT”とGPGPUの2つのプロセッサーコアが存在することが、前ページにあるchichibuチップの内部構造の画像で明らかにされているが、Int 2/4/8を使った(つまり精度がそれほど必要ない)用途向けにLow Power AIプロセッサーが、fp8/fp16を使った精度が必要な用途向けには汎用プロセッサーが用意されている。
Low Power AIは0.9TOPS、High Performance AIは2.7TOPSで「逆じゃないか?」という気もするが、その代わりLow Power AIを使うと消費電力が大幅に抑えられる、ということだろう
まずLow Power AIの方であるが、前ページにあるchichibuチップの内部構造画像でGPGPUという書き方をしていた。実際は? というと、下の画像のように16bitのMACエンジンの塊になっており、なるほどこれはDSPというよりはGPGPUに近いなと思う。
本当にもう畳み込みをするだけに特化したエンジンという感じである。また最大/平均のプーリングや全結合などもハードウェア的に実装されており、余分な手間なしで処理できる。その一方で、活性化関数はReLUのみ実装、というあたりはいろいろ割り切ったことが見られる。
一方High Performance AIの方であるが、先のchichibuチップの内部構造画像と併せて考えると、これはSMTに対応したRISC-Vコア(おそらくこちらもRV32系だろう)にVector Extensionを付けたコアが実装されており、このVector Extensionをブン廻すことで対応する形だ。
High Performance AIの概要。おそらくchichibuチップは、このRV32Vチップを4つ搭載する前提だと思われる。それにしても、×8のKernel coefficient parallelismの意味がよくわからない
市販のIPでこの目的に適うものは存在しないが、例えば連載594回で紹介したEsperantoのET-Mineonは、こちらもSMTに対応したRV32コアで、ただしRVV(RISC-V Vector)をサポートしている。SMTの目的はメモリーアクセス待ちなどのレイテンシー遮蔽であり、これはAiOnIcでも同じことだと思われる。
おそらくRV32コアそのものは、アプリケーションプロセッサー(兼システム制御用)のSiFive E34コアと同等の、In-Order Single Issueで5~6段程度のパイプラインという比較的小さなコアで、このコアそのもののエリアサイズはそう大きくはないと思うのだが、問題はVector UnitとLoad/Store Unitはそれなりの面積になりそうなことだ。
これを4つも入れたら冒頭に書いた「80~90mm2前後」どころか「120mm2」も怪しそうな気はするのだが、これはプロセスの微細化が前提なのだろう。逆に言えばbeppuチップは、おそらくRISC-Vコアは1つだけだろうし、Low Power AIの方ももう少し規模が小さいと思われる。
そのあたりのロードマップが下の画像だ。現在はTSMCのN12でbeppuチップを製造しているが、おそらくchichibuチップはTSMCだとするとN7あたりに移行して製造されるものと思われる。
ちなみにN7を使う場合、ウェハーの製造コストは9300ドルほどになる。したがって、冒頭に出て来たチップ単価10ドルを実現するためには、最低でもウェハー1枚から900個、実際には1000個程度取らないと実現できないことになる。
1000個だとするとダイサイズは最大で70mm2、実際には50~60mm2あたりで抑える必要があるだろう。幸いにもN12→N7でトランジスタ密度そのものは3倍程度になるため、ダイサイズが減っても利用できるトランジスタ数は1.5倍近くになるので、一応微細化の意味はあると言える。
もっとも、プロセス微細化よりも(単価アップには目をつむって)回路規模を大きくする方が性能をスケーラブルに上げられるとしており、実際同社からこのAiOnIcのIPの提供を受けた顧客の場合、400TOPSのチップを製造しているとする。
同社はチップを提供、というよりもソリューションを提供することを志向しているようで、ただなにもないと開発にも困るのでとりあえずbeppuチップを製造、ついで本番向けにchichibuチップを製造する予定ではあるが、むしろbeppuチップを評価の上でIPの供給を受けて自社でAiOnIcベースのチップを製造する顧客を増やす、というのがビジネスの方向性のように思われる。
ベンチャー企業がチップの製造をメインに据えるといろいろ難しさが出てくるというのは、例えばETA Computeのケースでも紹介した通りで、IP売りをベースにSoC設計サービスなども行ないつつ基本はソリューション提供、というのは堅実な方法なのかもしれない。

この連載の記事
-
第852回
PC
Google最新TPU「Ironwood」は前世代比4.7倍の性能向上かつ160Wの低消費電力で圧倒的省エネを実現 -
第851回
PC
Instinct MI400/MI500登場でAI/HPC向けGPUはどう変わる? CoWoS-L採用の詳細も判明 AMD GPUロードマップ -
第850回
デジタル
Zen 6+Zen 6c、そしてZen 7へ! EPYCは256コアへ向かう AMD CPUロードマップ -
第849回
PC
d-MatrixのAIプロセッサーCorsairはNVIDIA GB200に匹敵する性能を600Wの消費電力で実現 -
第848回
PC
消えたTofinoの残響 Intel IPU E2200がつなぐイーサネットの未来 -
第847回
PC
国産プロセッサーのPEZY-SC4sが消費電力わずか212Wで高効率99.2%を記録! 次世代省電力チップの決定版に王手 -
第846回
PC
Eコア288基の次世代Xeon「Clearwater Forest」に見る効率設計の極意 インテル CPUロードマップ -
第845回
PC
最大256MB共有キャッシュ対応で大規模処理も快適! Cuzcoが実現する高性能・拡張自在なRISC-Vプロセッサーの秘密 -
第844回
PC
耐量子暗号対応でセキュリティ強化! IBMのPower11が叶えた高信頼性と高速AI推論 -
第843回
PC
NVIDIAとインテルの協業発表によりGB10のCPUをx86に置き換えた新世代AIチップが登場する? -
第842回
PC
双方向8Tbps伝送の次世代光インターコネクト! AyarLabsのTeraPHYがもたらす革新的光通信の詳細 - この連載の一覧へ














