カード1枚あたりの性能はNVIDIAにはかなわないが
消費電力が低いのでNVIDIAより圧倒的に高効率
ここからは性能の話だ。性能を何で比較するのが公平か? に関しては連載613回でも少し触れたが、IPS/Wを採用する方向のベンダーが次第に増えつつある。Qualcommもその方向性ではあるのだが、HotChipsではその前段階としてTOPs/Wの数字が示された。
数字が3種類あるのは、もともとCloud AI 100には連載583回で紹介したように3種類のSKUが存在し、それぞれ異なるTDP(15W/25W/75W)になっているためだ。これは別にCloud AI 100に限った話ではなく、それこそCore iやRyzenなども同じだが、性能効率を上げたければ動作周波数を落とした方が効果的である。
動作周波数が低い時にはかなり動作電圧を落とせるが、あるところから先は動作周波数の上がり方より電圧の上がり方が急になる。消費電力は電圧の2乗に比例することを考えれば、一番動作周波数が低いと思われるDM.2eタイプのものが一番効率が良いのは当然だ。
とはいえ、実シリコンで10TOPs/Wを超えたというのはなかなかインパクトのある話である。もう少し現実的な数字として、推論についてIPSおよびIPS/Wを示したのが下の画像だ。
バッチサイズと性能の関係が下の画像であり、Qualcommが提供するAIMET(AI Model Efficiency Toolkit)というツールを利用してネットワークを圧縮した場合の性能向上率と精度の悪化率をまとめたのがさらにその下の画像となっている。
これらの数字はMLPerf 1.0ベースでの結果であり、数字そのものはかなり優秀な部類に入るのだが、MLPerf 1.0はそもそも結果があまり集まっていないこともあって、今一つそのすごさが伝わりにくかった。
そこで、MLCommonsがMLPerf 1.1の結果を発表したのに合わせ、QualcommもそのMLPerf 1.1に関するサマリーを公表している。ちなみにMLPerf 1.1はデータセンター向けとエッジ向けの、しかも推論のみが公開されている。昔のロードマップでは、推論に先駆けて学習向けが先に実施される予定だったはずだが、少しずれた格好だ。
このMLPerf 1.1で、QualcommはNVIDIAを非常に強く意識した説明をした。ここではTOPs/Wではなく、IPS/W(Inference Per Second/W)を意識した結果になっており、NVIDIAの製品と比較して圧倒的に効率が良いとしている。
下の画像が実際にMLPerf 1.1に登録された数字である。
この連載の記事
-
第797回
PC
わずか2年で完成させた韓国FuriosaAIのAIアクセラレーターRNGD Hot Chips 2024で注目を浴びたオモシロCPU -
第796回
PC
Metaが自社開発したAI推論用アクセラレーターMTIA v2 Hot Chips 2024で注目を浴びたオモシロCPU -
第795回
デジタル
AI性能を引き上げるInstinct MI325XとPensando Salina 400/Pollara 400がサーバーにインパクトをもたらす AMD CPUロードマップ -
第794回
デジタル
第5世代EPYCはMRDIMMをサポートしている? AMD CPUロードマップ -
第793回
PC
5nmの限界に早くもたどり着いてしまったWSE-3 Hot Chips 2024で注目を浴びたオモシロCPU -
第792回
PC
大型言語モデルに全振りしたSambaNovaのAIプロセッサーSC40L Hot Chips 2024で注目を浴びたオモシロCPU -
第791回
PC
妙に性能のバランスが悪いマイクロソフトのAI特化型チップMaia 100 Hot Chips 2024で注目を浴びたオモシロCPU -
第790回
PC
AI推論用アクセラレーターを搭載するIBMのTelum II Hot Chips 2024で注目を浴びたオモシロCPU -
第789回
PC
切り捨てられた部門が再始動して作り上げたAmpereOne Hot Chips 2024で注目を浴びたオモシロCPU -
第788回
PC
Meteor Lakeを凌駕する性能のQualcomm「Oryon」 Hot Chips 2024で注目を浴びたオモシロCPU -
第787回
PC
いまだに解決しないRaptor Lake故障問題の現状 インテル CPUロードマップ - この連載の一覧へ