ロードマップでわかる!当世プロセッサー事情 第803回
トランジスタの当面の目標は電圧を0.3V未満に抑えつつ動作効率を5倍以上に引き上げること IEDM 2024レポート
2024年12月23日 12時00分更新
電圧を0.3V未満に抑えて動作効率を5倍以上に引き上げつつ
性能は0.65V動作のトランジスタの半分程度まで引き上げるのが目標
ただ、2030年を目指すにあたっては、単に面積の縮小だけでなく、消費電力と放熱の問題も解決する必要があるとする。まず消費電力にからむ話で、とにかく電圧を下げないことには消費電力が下がらないのだが、電圧を下げると同時にトランジスタの速度も大きく落ちてしまう。
0.6Vで動作するトランジスタを0.3Vまで落とすとエネルギー効率は5倍に向上するが、トランジスタのスイッチング速度が8分の1になってしまう。
これを改善するトランジスタの構造をSteep Slope Transistorとして各社さまざまな技法を検討している。

トランジスタそのものが遅くなることそのものは仕方ないとして、その遅くなる程度を許容範囲内に抑えたい、というのが現在の目標になっている。また、電荷の移動速度を高速化する技法を併用することで、実用につなげたいというわけだ
そのSteep Slope Transistorの候補して現在はTunnel FET(トンネル効果を利用したトランジスタ)、Negative Capacitance FET(NC-FET:強誘電薄膜をゲート絶縁膜に利用することで、負の電界容量を持つ状態を作り出し、これを利用したトランジスタ)とFerroelectric FET(同様に強誘電体膜をゲート絶縁膜に用いる技法だが、Negative Capacitance FETとは異なる)の3つを候補として挙げている。
一方チャネルの電荷移動量の改善に関しては、シリコンをGe(ゲルマニウム)に変更することで、大幅に性能が改善される(PMOSで3~4倍、NMOSで3倍)ために有望である、としている。
これを組み合わせた、1つのビジョンが下の画像だ。電圧を0.3V未満に抑えて動作効率を5倍以上に引き上げつつ、性能は今の0.65V動作のトランジスタの半分程度まで引き上げることを目指している。
ただこれはトランジスタレベルでの改良であり、実際にはチップにする際にまた別の配慮が必要であるが、それは別の招待講演で説明されたので、次回はそちらをご紹介しよう。

この連載の記事
-
第813回
PC
Granite Rapid-DことXeon 6 SoCを12製品発表、HCCとXCCの2種類が存在する インテル CPUロードマップ -
第812回
PC
2倍の帯域をほぼ同等の電力で実現するTSMCのHPC向け次世代SoIC IEDM 2024レポート -
第811回
PC
Panther Lakeを2025年後半、Nova Lakeを2026年に投入 インテル CPUロードマップ -
第810回
PC
2nmプロセスのN2がTSMCで今年量産開始 IEDM 2024レポート -
第809回
PC
銅配線をルテニウム配線に変えると抵抗を25%削減できる IEDM 2024レポート -
第808回
PC
酸化ハフニウム(HfO2)でフィンをカバーすると性能が改善、TMD半導体の実現に近づく IEDM 2024レポート -
第807回
PC
Core Ultra 200H/U/Sをあえて組み込み向けに投入するのはあの強敵に対抗するため インテル CPUロードマップ -
第806回
PC
トランジスタ最先端! RibbonFETに最適なゲート長とフィン厚が判明 IEDM 2024レポート -
第805回
PC
1万5000以上のチップレットを数分で構築する新技法SLTは従来比で100倍以上早い! IEDM 2024レポート -
第804回
PC
AI向けシステムの課題は電力とメモリーの膨大な消費量 IEDM 2024レポート - この連載の一覧へ