機能ブロックCPUの特徴5
標準的なコアはISAが複雑すぎる
x86もArmもそうだが、命令数はかなり多い。MCU向けのCortex-Mはアプリケーション向けのCortex-Aに比べたらだいぶ命令数は少ないものの、汎用という縛りもあり、基本命令だけで113個。これに加えてアクセラレーター(FPU/DSP)命令まである。
問題は、機能ブロックに使うCPUでこの命令を全部サポートする必要があるか? である。答えは否で、互換性はそもそも必要ないから「機能ブロックで使う一部の命令だけをサポート」するようにしたい。しかしこれはx86にせよArmにせよ、許されない(昔のPowerPCなども同じであった)。これを許すと互換性がなくなってしまうからだ。
そして多すぎる命令は実装の負荷がかかる。命令デコードをハードワイヤードで実装していれば、その分回路が複雑になるし、マイクロコードであればマイクロコードROMの容量が増え、どちらにせよ回路の面積増大につながる。これはコスト削減には好ましくない。
機能ブロックCPUの特徴6
勝手に命令を増やせない
逆に機能ブロックを構成する際に、アクセラレーターを簡単にアクセスできるような命令を追加したいと思っても、これまた互換性を保つ観点から許されない。Armは2019年になってやっと、Cortex-M用のArm v8-MにCustom Instruction Extensionと呼ばれる機能を追加。16命令までの独自命令がサポートされるようになったが、それまでは一切独自に命令を増やせなかった。
機能ブロックCPUの特徴7
ロイヤリティーが安くない
x86はそもそも論外として、Armの場合はまずそのコアを採用する際にライセンスを取得(これも決して安くない)したうえで、そのコアを使って量産に入る場合、利用するコアの数に応じてロイヤリティーを支払う必要がある。
これはASICコアに組み込む場合も同じで、契約の形態に応じていろいろ支払い方法はあるようだが、一般には機能ブロックを提供するベンダーではなく、そのASICを製造するメーカーがArmと契約を結んで、コアの数にあわせたロイヤリティーをArmに支払う必要がある。このロイヤリティーがArmの大きな収入源であるわけで、逆に言えばそれだけ機能ブロックのコストが上がることになる。
メンバーはハードウェアよりも
ソフトウェアエコシステムの発展に期待
以上が機能ブロックCPUの特徴だ。こうなると、アプリケーションプロセッサーともかくとして、機能ブロックに組み込むCPUにArmコアを搭載するのはコストパフォーマンスが悪い選択肢になる。
先のFounder企業の中で、台湾のAndes Technology、フランスのCortus、チェコのCodasip、ロシアのSyntacoreなどはいずれもこうした、非Armの独自コアをASICの機能ブロックの組み込み向けなどに向けて提供していたベンダーである。これらのベンダーが提供するコアは命令のカスタマイズや拡張が自由に行なえ、ライセンスやロイヤリティーに関しても柔軟性があり、用途によってはArmコアより高効率であることを特徴としていた。
ただしその反面ソフトウェアのサポートなどはあまり十分ではなく、GNUのToolchainとLinux Kernelが提供される程度。中にはRTOSのサポートが用意されるものがあったが、ラフに言えば機能ブロックを提供するベンダーには必要十分というレベルで、一般に広く使うには足りないものがかなりある、といった感じの状況だった。
こうしたベンダーが一斉にRISC-V FoundationのFounding Memberに名前を連ねた、というのは要するにハードウェアよりもソフトウェアエコシステムの発展に期待をしたから、という話である(続く)。

この連載の記事
-
第813回
PC
Granite Rapid-DことXeon 6 SoCを12製品発表、HCCとXCCの2種類が存在する インテル CPUロードマップ -
第812回
PC
2倍の帯域をほぼ同等の電力で実現するTSMCのHPC向け次世代SoIC IEDM 2024レポート -
第811回
PC
Panther Lakeを2025年後半、Nova Lakeを2026年に投入 インテル CPUロードマップ -
第810回
PC
2nmプロセスのN2がTSMCで今年量産開始 IEDM 2024レポート -
第809回
PC
銅配線をルテニウム配線に変えると抵抗を25%削減できる IEDM 2024レポート -
第808回
PC
酸化ハフニウム(HfO2)でフィンをカバーすると性能が改善、TMD半導体の実現に近づく IEDM 2024レポート -
第807回
PC
Core Ultra 200H/U/Sをあえて組み込み向けに投入するのはあの強敵に対抗するため インテル CPUロードマップ -
第806回
PC
トランジスタ最先端! RibbonFETに最適なゲート長とフィン厚が判明 IEDM 2024レポート -
第805回
PC
1万5000以上のチップレットを数分で構築する新技法SLTは従来比で100倍以上早い! IEDM 2024レポート -
第804回
PC
AI向けシステムの課題は電力とメモリーの膨大な消費量 IEDM 2024レポート -
第803回
PC
トランジスタの当面の目標は電圧を0.3V未満に抑えつつ動作効率を5倍以上に引き上げること IEDM 2024レポート - この連載の一覧へ