Hybrid Bondingは土台の反りをいかに抑えるかがポイント
下の画像が今回試作されたHBの断面写真となる。一見する限りはかなり綺麗に接続できており、またテストの結果も良好とのこと。

微妙にChipletのずれはあるが、問題なく接続できていることはわかる。ただ接続部の幅が1.5μm程度しかないので、Chiplet同士のずれを0.1μm未満に抑えないと厳しいわけで、より精密な制御が必要になる
下の画像がこのHBを構築するための製造プロセスである。
左上から横方向に順に、下のようなけっこう面倒な処理になっている。
- 1:土台(Carrier)にChipletを置く
- 2:その上に誘電材を構成する
- 3:CMPを使ってこれを平坦化する
- 4:必要な個所にTDVを構築する
- 5:全体の上にHB層を構築する
- 6:1~5をもう一度繰り返し、製造されたTop Chipletをひっくり返して載せる
- 7:土台を外す
- 8:全体をパッケージに載せる
この2番目、つまりChiplet全体を覆うように誘電材を構築するという処理が意外に大変で、土台の反りをいかに抑えるかがポイントとの話であった。

CMPを使うためには通常のシリコンウェハーと同じサイズのキャリアを使う必要があり、当然反りが問題になりやすい。特に左図のように、Chipletの隙間は落ち込むわけで、ここで十分な高さまで誘電材を埋めるのが、反りがあると大変だった模様
またこの角にあたる部分は強度的にストレスがかかりやすいので、欠けないようにするのが大変だったという話も紹介された。
さらに言えばこの誘電材の構築後の平滑化(先の3)にあたっては、20μmほど削り込む必要があるとされる。これは通常のCMOSプロセスの10倍だそうで、通常のCMOSプロセスと同じスラリー(研磨剤)を使っていたら時間がかかりすぎてしまう。
そこでおそらくはもう少し荒い研磨剤を用意するとともに、削り方を工夫することで実現した、とされる。
その分荒れ具合は少し大きくなっているようで、通常のCMOSプロセスで使うスラリーだと0.75~1Å程度を削れるのに対し、今回使ったスラリーでは3.2~3.3Å程度を一気に削れるようになったそうだ。
もちろんこのままでは荒すぎる気がするので、あるいはまずこの荒いスラリーで大雑把に削った後、最後により目の細かい(?)スラリーでより厳密に削ったのかもしれないが(どの程度まで削れば分子間力での接続に十分なのか、に関して筆者は情報を持っていない)。
ところで先にTDVについて少しだけ触れた。一般にはこれはTSV(Through Silicon Vias:シリコン貫通電極)を使うが、インテルはこれをTSVではなくTDVを使うのが効果的としている。両者の違いは材質で、要するに銅配線を使うか、誘電材を使うかである。
CMOSプロセスではここにタングステンを使ったりするが、TSVでは通常銅である。ではTSVをTDVにするとなにが良いか? というのが下の画像だ。
TSVは配線密度を上げると配線抵抗も急速に増えることでIR Drop(要するに電圧降下だ)も大きくなる。一番右のグラフがわかりやすいが、TSVでは配線に起因する寄生容量が比較的大きく、また信号周波数の影響を受けやすい。TDVだとこの影響が少ないため、Power/Signal Integrity(電源供給や信号送受信の収束性)が向上する、とのことだった。
今回の発表は、「次世代の」Foveros Directを目指したものであり、3μmまで配線ピッチを縮めることが現実的に可能、というものとなっている。こうなると1mm2あたり11万1千本以上の配線密度を実現可能で、しかもTSVを利用した場合より良い伝達特性が実現できる、というものであった。
少なくとも2023年後半登場の第1世代Foveros Directには利用されないので、今すぐどうこうという話ではないが、まだまだ3Dパッケージング技術は発展の余地がある、ということを知らしめる発表となった。

この連載の記事
-
第813回
PC
Granite Rapid-DことXeon 6 SoCを12製品発表、HCCとXCCの2種類が存在する インテル CPUロードマップ -
第812回
PC
2倍の帯域をほぼ同等の電力で実現するTSMCのHPC向け次世代SoIC IEDM 2024レポート -
第811回
PC
Panther Lakeを2025年後半、Nova Lakeを2026年に投入 インテル CPUロードマップ -
第810回
PC
2nmプロセスのN2がTSMCで今年量産開始 IEDM 2024レポート -
第809回
PC
銅配線をルテニウム配線に変えると抵抗を25%削減できる IEDM 2024レポート -
第808回
PC
酸化ハフニウム(HfO2)でフィンをカバーすると性能が改善、TMD半導体の実現に近づく IEDM 2024レポート -
第807回
PC
Core Ultra 200H/U/Sをあえて組み込み向けに投入するのはあの強敵に対抗するため インテル CPUロードマップ -
第806回
PC
トランジスタ最先端! RibbonFETに最適なゲート長とフィン厚が判明 IEDM 2024レポート -
第805回
PC
1万5000以上のチップレットを数分で構築する新技法SLTは従来比で100倍以上早い! IEDM 2024レポート -
第804回
PC
AI向けシステムの課題は電力とメモリーの膨大な消費量 IEDM 2024レポート -
第803回
PC
トランジスタの当面の目標は電圧を0.3V未満に抑えつつ動作効率を5倍以上に引き上げること IEDM 2024レポート - この連載の一覧へ