前回はプロセス、つまり前工程側の話を説明したので、今回は後工程側の話をしよう。
パッケージ技術の強化に余念がないインテル
インテルはファウンダリービジネスを再開するにあたり、単に前工程だけでなく後工程のうち、パッケージ技術に関しても差別化要因が必要になっている。先に618回でAMDの3D V-Cacheに絡めてTSMCのパッケージ技術について概要を説明したが、これに相当する技術をインテルも用意してきた格好だ。
そもそも昨今では、特にCoWoSのあたりから前工程と後工程の境があいまいになりつつある。もともとの定義で言えば以下の(1)~(4)が前工程、(5)~(7)が後工程という話だった。
(1) ウェハーの表面酸化
(2) 薄膜加工
(3) 配線パターニング
(4) 電極形成
(5) ダイシング(ウェハーからチップを切り出し)
(6) パッケージング(パッケージにダイを搭載して配線する)
(7) テスト
ところが、CoWoSの場合は配線材料そのものもウェハーを使い、しかも配線密度が従来よりはるかに高くなった関係で、後工程工場の従来の実装設備では精度が足りず、それもあって当初は後工程工場に新規の設備を入れたり、一部作業を前工程工場に戻したりという騒ぎになったらしい。
昨今では後工程工場もCoWoSのような2.5Dインターポーザーについては対応できるようになったが、TSMCで言えばInFOやSoICに関しては後工程工場に任せずにTSMC自身でパッケージングまでを済ませる方向にシフトしつつあり、その意味では前工程・後工程の境目が怪しくなってきている。インテルも当然こうしたことに対応して、自社のパッケージ技術の強化に余念がないわけだ。
配線方法に違いがあるEMIBとCoWoS
さてまずはEMIB(Embedded Multi-Die Interconnect Bridge)について。標準パッケージと比べて配線密度を2倍に、伝送効率を4倍にできるというものであるが、ではTSMCのCoWoS(Chip on Wafer on Substrate)と何が違うのか? という話をまず説明しよう。
下図が、これは何度も出てきたCoWoSである。CPUやGPUのダイは、まずダイと同じ材質の(つまり半導体の前工程を使って製造された)インターポーザーに、Microbumpと呼ばれる微小な半田ボールで接続される。このダイとインターポーザーの間のMicrobumpは、初期のCoWoSの場合で直径20μmほどである。
インターポーザー内には配線が通っており、Die 1とDie 2をつなぐだけであればここで用事が済む。一方で外部に配線を出す場合には、インターポーザーの下にもMicrobumpが用意される。こちらのMicrobumpは直径80μmほどである。電源ピンや外部信号は、このMicrobump経由でパッケージに接続され、最終的にパッケージ底面のBump(こちらは直径250μm程度)で接続される。
ちなみに電源配線などの場合、インターポーザー内で配線を引き回すと抵抗が増えて焼けてしまう可能性がある。そこでこうした外部との配線に関しては、インターポーザー内にTSV(垂直貫通電極)を設け、パッケージの上面からダイの底面までまっすぐ接続されるようになっている。
これに対してインテルの提供するEMIBは下図のようになっている。つまりパッケージにインターポーザーが埋め込まれる形だ。このインターポーザーはダイ間の通信にのみ利用され、外部に出す信号や電源などはパッケージから直接ダイにつながる形になる。
実はこのEMIB、第1世代はいろいろ制約があった。最大のものは「HBMがそのまま接続できない」ということだろうか。HBM(High Bandwidth Memory)はあの狭いパッケージに3000本以上のピンがあるため、底面は下図のような形でMicrobumpが配されている(Microbumpの直径そのものは25μm)。
EMIBでもギリギリ直接接続できそうな気もするのだが駄目だったそうで、なので例えば2017年に出たStratix 10 MXの場合、HBMを一旦シリコンインターポーザーに乗せ、これをEMIBでつなぐという不思議な構造だったらしい。ただそのEMIBも改良が進んでおり、実際Ponte VecchioはHBM2eをEMIBだけで接続できるようになっているし、EMIBそのもののBump Pitchもどんどん小さくなったとされる。

この連載の記事
-
第852回
PC
Google最新TPU「Ironwood」は前世代比4.7倍の性能向上かつ160Wの低消費電力で圧倒的省エネを実現 -
第851回
PC
Instinct MI400/MI500登場でAI/HPC向けGPUはどう変わる? CoWoS-L採用の詳細も判明 AMD GPUロードマップ -
第850回
デジタル
Zen 6+Zen 6c、そしてZen 7へ! EPYCは256コアへ向かう AMD CPUロードマップ -
第849回
PC
d-MatrixのAIプロセッサーCorsairはNVIDIA GB200に匹敵する性能を600Wの消費電力で実現 -
第848回
PC
消えたTofinoの残響 Intel IPU E2200がつなぐイーサネットの未来 -
第847回
PC
国産プロセッサーのPEZY-SC4sが消費電力わずか212Wで高効率99.2%を記録! 次世代省電力チップの決定版に王手 -
第846回
PC
Eコア288基の次世代Xeon「Clearwater Forest」に見る効率設計の極意 インテル CPUロードマップ -
第845回
PC
最大256MB共有キャッシュ対応で大規模処理も快適! Cuzcoが実現する高性能・拡張自在なRISC-Vプロセッサーの秘密 -
第844回
PC
耐量子暗号対応でセキュリティ強化! IBMのPower11が叶えた高信頼性と高速AI推論 -
第843回
PC
NVIDIAとインテルの協業発表によりGB10のCPUをx86に置き換えた新世代AIチップが登場する? -
第842回
PC
双方向8Tbps伝送の次世代光インターコネクト! AyarLabsのTeraPHYがもたらす革新的光通信の詳細 - この連載の一覧へ


















