Sunny Coveからキャッシュ周りが変わった
Willow Cove
次はWillow Coveコアの話だ。もともと2018年のArchitecture Dayの際のスライドでは、Willow Coveはキャッシュ構成の再設計、新しいトランジスタへの最適化、セキュリティーの強化の3点が挙げられていた。このうち新しいトランジスタへの最適化は、上に示した10nm SuperFinへの対応ということでわかる。
コアの構成が上の画像であるが、Ice LakeというかSunny CoveのBackendと比較すると以下の違いがあり、多少Window Sizeなどを増強したかもしれないが、大きな変更はなさそうである。
- RSの数は4つ。ALU/FPU/AVX向けのPort 0/1/5/6、Store Data向けのPort 4/9、Load/Store Address向けのPort 2/8とPort 3/7の4つになっている。
- それぞれのポートの下にぶら下がる実行ユニットの数も同じ。
- Schedulerのウインドウサイズなどは今回明らかにされていないので比較できないが、構造そのものは大きく変わっていない
では変化があるのは? というとキャッシュ周り。そもそもIce Lakeの場合、キャッシュ構成は以下のようになっており、1次キャッシュこそ共通ながら2次と3次キャッシュが大容量化されるとともに、キャッシュ構成がNon-Inclusiveに切り替わった。
| Ice LakeとTiger Lakeの違い | ||||||
|---|---|---|---|---|---|---|
| Ice Lake | Tiger Lake | |||||
| 1次キャッシュ | 命令32KB+データ48KB | 命令32KB+データ48KB | ||||
| 2次キャッシュ | 512KB、Inclusive | 1.25MB、Non-Inclusive | ||||
| 3次キャッシュ | 2MB/core、Inclusive | 3MB/core、Non-Inclusive | ||||
Inclusive方式はレイテンシーこそ低いものの、キャッシュの利用効率が下がるという問題がある。一方Non-Inclusive方式では、キャッシュの利用効率そのものは高いものの、キャッシュミス時のデータのFillに時間が掛かるのと、複数コア間でのSnoopingの頻度も高まる関係で、レイテンシーが大きくなる。
かつて、インテルはAMDに対してプロセス面でアドバンテージがあり、それもあって大容量のキャッシュをInclusiveで搭載、対するAMDはプロセス面でのディスアドバンテージを補うべく、相対的に少ないキャッシュをExclusive構成で搭載することで見劣りしないように工夫する(ただしレイテンシーが余分にかかるので少し遅い)という戦略を取っていたが、このところAMDとインテルの立場がプロセスに関して逆転している。そこで、多少なりとも容量面での不利を補うためにこうした方策を取ったのかもしれない。
上の画像の最後に出てくるControl Flow Enforcementとは、Jump/Returnなどの制御命令を実行する際に、分岐先インジェクションなどの攻撃を受けやすいというものである。
この分岐先に対する攻撃は何種類かある(一番有名なのはSpectre V2)だが、そのSpectre V2そのものへの対応はIce Lake世代で一応完了している。ここで挙げられたのは、そうした応急対処ではなく、もう少し恒久的というか根本的に分岐命令の安全性を高めるための方策ではないかと思われる。
単にコアだけではなくSoCレベルでの改良箇所も多い。まずファブリックは、今回Dual Ring構成になったとしており、さらに新たにLP5-5400のサポートも追加されたとされている。
新たにLP5-5400をサポート。“(initial)”の文字からもわかるように、LP5-5400対応の製品は今後の投入になる模様だ。そもそもLP5-5400はまだサンプル出荷も始まってない(現在は特定顧客向けの開発用の初期バージョンがわずかにリリースされているだけ)段階なので、そもそもLP5-5400に対応したコントローラーそのものが内蔵されていない可能性すらある
加えて、Non-Inclusive LLCを採用したことでRing Busのトラフィックそのものが半分になったとしており、結果として従来比で4倍の帯域を利用可能になる計算だ。I/Oキャッシングに関しては、現状詳細不明なままであるが、後述するUSB Type-C周りであるいはなにかローカルキャッシュが利用されているのかもしれない。
ちなみに、上の画像にある86GB/sはLP5-5400を使った場合の数字である。またRyzen Pro/EPYC同様に、メモリー上のデータを自動的に暗号化すると思われる、Total Memory Encryptionが新たに追加された。
またアクセラレーターであるGNA(Gaussian and Neural Accelerator)も2.0になった。GNAの話は連載525回で説明したが、CPUコアから処理をオフロード可能なアクセラレーターという扱いである。

この連載の記事
-
第852回
PC
Google最新TPU「Ironwood」は前世代比4.7倍の性能向上かつ160Wの低消費電力で圧倒的省エネを実現 -
第851回
PC
Instinct MI400/MI500登場でAI/HPC向けGPUはどう変わる? CoWoS-L採用の詳細も判明 AMD GPUロードマップ -
第850回
デジタル
Zen 6+Zen 6c、そしてZen 7へ! EPYCは256コアへ向かう AMD CPUロードマップ -
第849回
PC
d-MatrixのAIプロセッサーCorsairはNVIDIA GB200に匹敵する性能を600Wの消費電力で実現 -
第848回
PC
消えたTofinoの残響 Intel IPU E2200がつなぐイーサネットの未来 -
第847回
PC
国産プロセッサーのPEZY-SC4sが消費電力わずか212Wで高効率99.2%を記録! 次世代省電力チップの決定版に王手 -
第846回
PC
Eコア288基の次世代Xeon「Clearwater Forest」に見る効率設計の極意 インテル CPUロードマップ -
第845回
PC
最大256MB共有キャッシュ対応で大規模処理も快適! Cuzcoが実現する高性能・拡張自在なRISC-Vプロセッサーの秘密 -
第844回
PC
耐量子暗号対応でセキュリティ強化! IBMのPower11が叶えた高信頼性と高速AI推論 -
第843回
PC
NVIDIAとインテルの協業発表によりGB10のCPUをx86に置き換えた新世代AIチップが登場する? -
第842回
PC
双方向8Tbps伝送の次世代光インターコネクト! AyarLabsのTeraPHYがもたらす革新的光通信の詳細 - この連載の一覧へ














