A10はExynos M3相当
A11はExynos M5相当の性能
問題はAppleが、それぞれのSoCの内部構造をまったく明らかにしてくれないことで、どんなものか想像するしかないのだが、1つの目安としてAndroidにおけるシングルコアの結果を使ってみたい。
大勢を占めるSnapdragonはやっぱり独自コアなので中身がわからないのだが、その次の勢力であるSamsungのEyxnosに関しては内部構造がある程度わかっている。そこでこの画像のリストからExynosシリーズのみを抜き出し、整理したのが下表である。
GeekBenchによるiOSアプリケーションのシングルコア性能 | ||||||
---|---|---|---|---|---|---|
SoC | 1GHzあたりの シングルコアの結果 |
コア構成 | ||||
Exynos 990 | 387.7 | Exynos M5(2.73GHz)×2+Cortex-A76(2.5GHz)×2+Cortex-A55(2GHz)×4 | ||||
Exynos 9825 | 366.7 | Exynos M4(2.73GHz)×2+Cortex-A75(2.4GHz)×2+Cortex-A55(1.95GHz)×4 | ||||
Exynos 9820 | 377.8 | Exynos M4(2.73GHz)×2+Cortex-A75(2.31GHz)×2+Cortex-A55(1.95GHz)×4 | ||||
Exynos 9810 | 325.9 | Exynos M3(2.9GHz)×4+Cortex-A55(1.9GHz)×4 | ||||
Exynos 9610 | 195.9 | Cortex-A73(2.3 GHz)×4+Cortex-A53(1.7 GHz)×4 | ||||
Exynos 8895 | 213.0 | Exynos M2(2.314GHz)×4+Cortex-A53(1.69GHz)×4 | ||||
Exynos 8890 | 213.8 | Exynos M1(2.6GHz)×4+Cortex-A53(1.6GHz)×4 | ||||
Exynos 7904 | 162.2 | Cortex-A73(1.8GHz)×2+Cortex-A53(1.6GHz)×6 | ||||
Exynos 7885 | 185.5 | Cortex-A73(2.2GHz)×2+Cortex-A53(1.6GHz)×6 | ||||
Exynos 7884 | 167.2 | Cortex-A73(1.6GHz)×2+Cortex-A53(1.35GHz)×6 | ||||
Exynos 7420 | 158.8 | Cortex-A57(2.1GHz)×4+Cortex-A53(1.5GHz)×4 | ||||
Exynos 5433 | 170.3 | Cortex-A15(1.9GHz)×4+Cortex-A7(1.3GHz)×4 | ||||
Exynos 5410 | 90.6 | Cortex-A15(1.8GHz)×4+Cortex-A7(1.3GHz)×4 | ||||
Exynos 7880 | 75.3 | Cortex-A53(1.9GHz)×8 | ||||
Exynos 7870 | 71.6 | Cortex-A53(1.6GHz)×8 | ||||
Exynos 7580 | 68.2 | Cortex-A53(1.6GHz)×8 | ||||
Exynos 7578 | 68.7 | Cortex-A53(1.5GHz)×4 | ||||
Exynos 7570 | 72.1 | Cortex-A53(1.4GHz)×4 |
スコアで比較すれば、以下のようになっていることがわかる。
- A7≒Cortex-A73
- A8>Exynos M2
- A9<Exynos M3
- A10≒Exynos M3
- A11≒Exynos M5
各CPUの特徴 | ||||||
---|---|---|---|---|---|---|
Cortex-A73 | 3命令Decode/6命令Dispatchのスーパースカラー/アウト・オブ・オーダー | |||||
Exynos M2 | 4命令Decode/11命令Dispatchのスーパースカラー/アウト・オブ・オーダー | |||||
Exynos M3 | 6命令Decode/12命令Dispatchのスーパースカラー/アウト・オブ・オーダー | |||||
Exynos M5 | 5命令Decode/8命令Dispatchのスーパースカラー/アウト・オブ・オーダー Cortex-X1 |
画像の出典は、Hot Chips 28の“Samsung Exynos M1 Processor”
画像の出典は、Hot Chips 30の“Samsung M3 Processor”
ここでExynos M5ではDecode/Dispatch数がむしろ減っているが、これは根本的なアーキテクチャーの変更による。
Samsungはまずアーキテクチャーライセンスをもとに、独自のExynos M1と、これを微細化したExynos M2をリリース。次いでマイクロアーキテクチャーを大幅に強化したEyxnos M3と、これの微細化版であるExynos M4まではリリースしたものの、その次にあたるExynos M5は開発費が高騰しすぎるという理由でキャンセルした。
その代わりARMと手を組み、Cortex-X Custom Programを締結。Cortex-A78をベースに、これを強化したカスタム版CPUであるCortex-X1を、Eyxnos M5という名前で投入している。
本来のExynos M5は7~8命令 Decode/13~14命令Dispatchのスーパースカラー/アウト・オブ・オーダー構成と目されていたが、ARMの設計チームはこれを5命令Decode/8命令Dispatchの構成に押し込んで同等の性能を確保したわけで、これはこれで称賛に値する。もっともEyynos M4からの伸びはあまり大きくないのだが。
ところがA12/A13は、これをさらに上回る(A13に至っては27%ほど上回っている!)性能を出しているわけで、この先もIPCをどうやって引き上げていくつもりなのかは良くわからない。
業界的にはA10がおおむね6命令Decode、A11/A12が7命令Decodeと目されており、A13ではひょっとして8命令Decodeに達している可能性がある。ただこの先9や10命令Decodeのスーパースカラー/アウト・オブ・オーダー構成(Dispatchは14~16命令程度だろうか?)を実装するかどうかは謎が残るところだ。
むしろこの先、AppleのSoCの方向はやや違った方向に移行すると筆者は考えている。開発キットのMac miniやMacBook系列であれば、従来のX/Zシリーズ、つまりコアの数を若干増やすとともに動作周波数をやや引き上げたプロセッサーのままで行けると思う。
この連載の記事
-
第805回
PC
1万5000以上のチップレットを数分で構築する新技法SLTは従来比で100倍以上早い! IEDM 2024レポート -
第804回
PC
AI向けシステムの課題は電力とメモリーの膨大な消費量 IEDM 2024レポート -
第803回
PC
トランジスタの当面の目標は電圧を0.3V未満に抑えつつ動作効率を5倍以上に引き上げること IEDM 2024レポート -
第802回
PC
16年間に渡り不可欠な存在であったISA Bus 消え去ったI/F史 -
第801回
PC
光インターコネクトで信号伝送の高速化を狙うインテル Hot Chips 2024で注目を浴びたオモシロCPU -
第800回
PC
プロセッサーから直接イーサネット信号を出せるBroadcomのCPO Hot Chips 2024で注目を浴びたオモシロCPU -
第799回
PC
世界最速に躍り出たスパコンEl Capitanはどうやって性能を改善したのか? 周波数は変えずにあるものを落とす -
第798回
PC
日本が開発したAIプロセッサーMN-Core 2 Hot Chips 2024で注目を浴びたオモシロCPU -
第797回
PC
わずか2年で完成させた韓国FuriosaAIのAIアクセラレーターRNGD Hot Chips 2024で注目を浴びたオモシロCPU -
第796回
PC
Metaが自社開発したAI推論用アクセラレーターMTIA v2 Hot Chips 2024で注目を浴びたオモシロCPU -
第795回
デジタル
AI性能を引き上げるInstinct MI325XとPensando Salina 400/Pollara 400がサーバーにインパクトをもたらす AMD CPUロードマップ - この連載の一覧へ