HW 2.5から性能が21倍向上
肝となるのがNNA(Neural Network Accelerator)であるが、2つのNNAが独立して配される。NNAの中枢は96×96のMACユニットで、これが単体で36.8TOPSの演算性能を持つ。このMACユニットは周囲に配された32MBのSRAMとだけデータ交換することで、効率よく計算できるようになっている。
もっともこれに関しては2019年7月にハンガリーのAIMotiveがFSDの分析をしており、それほど効率が良くないとしている。下の画像を見ると、SRAMセルからMACユニットに配線が集中しており、実際にはここがボトルネックになってしまいやすく、MACユニットの効率はかなり低いのではないか? と推察している。
AIMotiveによれば、MACユニットとSRAMセルを混在させるような構成にすれば、90%以上の効率を実現することも可能とするが、ただし設計が複雑化する関係で、設計完了が半年~1年程度伸びることになる。
Teslaはこの設計期間が延びることを嫌って、不効率を覚悟のうえであえて単純な構成でFSDチップを設計したのではないか? というものだ。
Teslaクラスの資金力があれば、例えばHW3.0はこの単純なFSDチップで実現しておいて、これとは別により最適化を進めたチップを並行して開発することも不可能ではないだろうし、とりあえずNVIDIAから自前にチップ設計を切り替える第一歩としては、確実に動くものを作る方が重要だったという判断もあり得るわけで、その意味でもAIMotiveの分析は間違っていないように思える。
NNAの内部構造は以下の画像のとおり。MACアレイでひたすら乗算を行ない、その結果をSIMDエンジンで受けるという格好になっている。
SIMDエンジンの内部構造が下の画像だ。SIMDといっても乗算そのものはMACユニットで済ませた後になるので、加算とアクティベーションが主な作業であり、それもあって対応する命令は多いものの、実装そのものは比較的簡単なようだ。
さてこのFSD、HotChipsでの発表によれば従来のHW 2.5と比較して21倍の性能向上を実現しているとする、消費電力の絶対値は25%増えているものの、性能/消費電力比は大幅に向上しているわけだ。
またコストは2割削減できたとしている。ちなみにNVIDIAのDrive Xavierと比較した場合、6.9倍の性能になるとのこと。
TeslaはいつまでこのHW 3.0、つまり現バージョンのFSDを使い続けるつもりなのかはよくわらない。あるいはそろそろ内部的にはHW 3.5が登場しつつあるのかもしれない。なんにせよ、レベル2の自動運転を実行し、レベル3にトライするためにはこの程度の演算処理性能が必要、という1つの目安になることは間違いない。
この連載の記事
-
第797回
PC
わずか2年で完成させた韓国FuriosaAIのAIアクセラレーターRNGD Hot Chips 2024で注目を浴びたオモシロCPU -
第796回
PC
Metaが自社開発したAI推論用アクセラレーターMTIA v2 Hot Chips 2024で注目を浴びたオモシロCPU -
第795回
デジタル
AI性能を引き上げるInstinct MI325XとPensando Salina 400/Pollara 400がサーバーにインパクトをもたらす AMD CPUロードマップ -
第794回
デジタル
第5世代EPYCはMRDIMMをサポートしている? AMD CPUロードマップ -
第793回
PC
5nmの限界に早くもたどり着いてしまったWSE-3 Hot Chips 2024で注目を浴びたオモシロCPU -
第792回
PC
大型言語モデルに全振りしたSambaNovaのAIプロセッサーSC40L Hot Chips 2024で注目を浴びたオモシロCPU -
第791回
PC
妙に性能のバランスが悪いマイクロソフトのAI特化型チップMaia 100 Hot Chips 2024で注目を浴びたオモシロCPU -
第790回
PC
AI推論用アクセラレーターを搭載するIBMのTelum II Hot Chips 2024で注目を浴びたオモシロCPU -
第789回
PC
切り捨てられた部門が再始動して作り上げたAmpereOne Hot Chips 2024で注目を浴びたオモシロCPU -
第788回
PC
Meteor Lakeを凌駕する性能のQualcomm「Oryon」 Hot Chips 2024で注目を浴びたオモシロCPU -
第787回
PC
いまだに解決しないRaptor Lake故障問題の現状 インテル CPUロードマップ - この連載の一覧へ