キャッシュ容量の大型化とメモリーの高速化などで性能が向上
2つ目がキャッシュ容量の大型化とメモリーの高速化である。Raptor Lakeでは 以下の2次キャッシュを搭載しており、2次キャッシュだけで32MBもの大容量キャッシュになった。
- P-Coreあたり2MB
- E-Core Cluster(E-Core×4)あたり4MB(共有)
ちなみにAlder Lakeでは、以下のとおり合計14MBでしかない。
- P-Coreあたり1.25MB
- E-Core Clusterあたり2MB(共有)
3次キャッシュは引き続き、以下のとおりであるが、Raptor LakeではP-Core×8+E-Core Cluster×4になった関係で、3次キャッシュの合計は36MBに増量された(Alder Lakeは30MB)。
- P-Coreあたり3MB
- E-Core Clusterあたり3MB
ただ2次キャッシュと3次キャッシュの総容量がほとんど変わらなくなった関係で、3次キャッシュの扱い方を少し考えたらしい。
今回新たにDynamic INI(Inclusive/Non Inclusive)方式が採用されることになった。動的に2次/3次キャッシュのInclusive/Non-Inclusiveを切り替えられる、というものだ。Alder LakeはNon-Inclusive一択だったが、このあたりに若干の手が入った模様だ。
もう1つの違いは、メモリーである。1DPC(DIMM per Channel)なら最大5600MHz、2DPCでも4400MHzでの駆動が定格で可能になった。
Alder Lakeでは定格ではそれぞれ4800MHz、4000MHzだったから、これも性能に寄与することになる(効果は1~2%のオーダーであるが)。そしてメモリーの高速化に対応するため、内部のファブリックも最大5GHzまで動作周波数を引き上げられるように変更された。
最後のファクターがスレッドである。これはコアそのものではなく、Thread Directorの変更によるものだ。
大きな違いは、Thread Classの管理に、新たに機械学習を利用した仕組み(Perceptronベースという話であったが、詳細は公開されていない)を利用することで、よりE-Coreを積極的に利用できるようになった、というものだ。
もともとのThread Directorの仕組みは、システムの負荷が低い時にはP-Coreを休止させてE-Coreを活用することで消費電力を減らし、一方でシステムの負荷が上がった時にはP-Coreに切り替えて処理性能の向上(というか処理時間の短縮)を図るというものだった。
この原則はRaptor Lakeも変わらないが、これに加えて「さらに負荷が高いときは、P-CoreだけでなくE-Coreもフルにブン回す」というのがRaptor Lakeである。
下の画像はまだ負荷がそれほど高くないケースで、E-Coreは煩雑に負荷が0になる(P-Coreはかなり上に張り付いている)が、さらに高くなるとE-Coreも常時100%に張り付く格好になる。
要するにE-Coreも積極的に利用するようにしたのがRaptor Lakeの変更点で、これによりContents Creationなどの処理では30%以上の性能向上が見られる、というのがインテルの説明である。
説明会では他にもいくつか性能に関するスライドが出てきたが、間もなく実機でのベンチマーク結果も公開されるだろうことと、比較対象がZen 3ベースのRyzen 9 5950Xであり(まだRyzen 9 7950Xの発売前だったから当然だ)、すでにRyzen 9 7950Xが発売されている現時点では今ひとつおもしろくないことを考えて、今回は割愛する。
このあたりはKTU氏のレポートをお待ちいただきたい。全体として言えば、Zen 4とはまた別の方法で「内部構造は大きく変えずに実効性能を引き上げた」のがRaptor Lakeということになる。さて、Zen 4 vs Raptor Lake、どんな結果になるのだろうか?

この連載の記事
-
第852回
PC
Google最新TPU「Ironwood」は前世代比4.7倍の性能向上かつ160Wの低消費電力で圧倒的省エネを実現 -
第851回
PC
Instinct MI400/MI500登場でAI/HPC向けGPUはどう変わる? CoWoS-L採用の詳細も判明 AMD GPUロードマップ -
第850回
デジタル
Zen 6+Zen 6c、そしてZen 7へ! EPYCは256コアへ向かう AMD CPUロードマップ -
第849回
PC
d-MatrixのAIプロセッサーCorsairはNVIDIA GB200に匹敵する性能を600Wの消費電力で実現 -
第848回
PC
消えたTofinoの残響 Intel IPU E2200がつなぐイーサネットの未来 -
第847回
PC
国産プロセッサーのPEZY-SC4sが消費電力わずか212Wで高効率99.2%を記録! 次世代省電力チップの決定版に王手 -
第846回
PC
Eコア288基の次世代Xeon「Clearwater Forest」に見る効率設計の極意 インテル CPUロードマップ -
第845回
PC
最大256MB共有キャッシュ対応で大規模処理も快適! Cuzcoが実現する高性能・拡張自在なRISC-Vプロセッサーの秘密 -
第844回
PC
耐量子暗号対応でセキュリティ強化! IBMのPower11が叶えた高信頼性と高速AI推論 -
第843回
PC
NVIDIAとインテルの協業発表によりGB10のCPUをx86に置き換えた新世代AIチップが登場する? -
第842回
PC
双方向8Tbps伝送の次世代光インターコネクト! AyarLabsのTeraPHYがもたらす革新的光通信の詳細 - この連載の一覧へ















