このページの本文へ

前へ 1 2 3 4 次へ

ロードマップでわかる!当世プロセッサー事情 第581回

謎が多いGeForce RTX 3000シリーズのプロセスとGDDR6X NVIDIA GPUロードマップ

2020年09月21日 12時00分更新

文● 大原雄介(http://www.yusuke-ohara.com/) 編集●北村/ASCII

  • この記事をはてなブックマークに追加
  • 本文印刷

 AIプロセッサー連載は来週から再開予定だ。というわけで今週はNVIDIAの話をお届けしたい。言うまでもなくGeForce RTX 3000シリーズの話である。といっても、GeForce RTX 3000シリーズの話は発表会アーキテクチャー解説開封の儀ファーストレビューゲームレビューとKTUこと加藤勝明氏ががっつりレビューしているので、これを繰り返すつもりはない(というか、勉強になります)。

 ではなんの話かというと、プロセス、それと加藤氏にネタ振りされていたGDDR6Xについてだ。

GeForce RTX 3000シリーズ

8LPPプロセスがベースとなる
Samsung 8Nプロセス

 まずはプロセス。今回NVIDIAがAmpereで採用したのはSamsungの8Nプロセスである。もちろんこんなプロセス、Samsungは標準では提供していない。Samsungのプロセスは連載418回が最後なので、アップデートも兼ねておさらいしよう。

 下の画像は昨年10月におけるSamsungのプロセスロードマップである。実際にはこのスライドにあるFinFET/GAA系とは別にFD-SOI系もあり、こちらが最近は引き合いが多いのだが、これは無線通信やIoT向けなど、やや用途がPC系とは異なるのでここではおいておく。

これは2019年10月のArm TechConにおけるSamsungの発表スライドより。毎年細かくロードマップが変わるので、なかなか追いつかない。ちなみに8LPUはむしろ省電力に特化させたものなので、8Nとは違うものだろう

 大きなノードとしては14LPE、10LPE、7LPP、それと3GAEの4世代がある。

各ノードの違い
14LPE FinFETプロセスの第1世代。この14LPEと、これを改良した14LPPはGlobalfoundriesにもライセンスされた。
10LPE FinFETプロセスの第2世代。Gate Pitch/Metal Pitchを詰めたことで、より高密度実装が可能になっている。ちなみにこのノードまでがArF(フッ化アルゴン)液浸のマルチパターニングで露光している。
7LPP FinFETプロセスの第3世代。さらにピッチを詰める構造になっており、省電力性と高速性を両立できたとしている。このノードから露光にはEUV(極端紫外線)を利用する。
3GAE GAA(Gate All Around)構造の第1世代

 今回の8Nであるが、おそらくベースになっているのは8LPPプロセスである。もともとは10LPEで、これのトランジスタ駆動性能を引き上げた高速版が10LPP。その10LPPのピッチを縮小した(Fin Pitchは変わらず)のが8LPPとされる。Samsungの主要ノードのパラメーターは以下のようになっている。

Samsungの主要ノードのパラメーター
プロセス 14nm 10nm 8nm 7nm
Fin Pitch 54nm 42nm 42nm 27nm
Gate Pitch 78nm 68nm 64nm 54nm
Metal Pitch 64nm 48nm 44nm 36nm

 トランジスタの密度という意味では14nm世代(おそらく14LPP)と8nm世代(おそらく8LPP)は14LPPを8LPPに移行すると53%ほど向上する(Gate Pitch×Metal Pitchの比率)計算になるが、Fin Pitchそのものは10nmと8nmで変わらないので、ここまで小さくなるかというと、もう少し低めで45~46%くらいに落ち着くだろう。

 ただ、10nm→8nmでは16%程の密度向上でしかなく、実質トランジスタの数は1割程度しか増えない。その意味では、8nmといっても限りなく10nmに近いレベルと言って良い。これは、EUVを使う7nmでは10nmと比べて67%もトランジスタ密度が上がるのと好対照である。

 7nmはさらにFin Pitchも大幅に切り詰めているので、間違いなくこれに近いところまでトランジスタ数が増えるだろう。

 以上のことから、もし可能であればNVIDIAは7LPPを使いたかったのだろう。この7LPPに関わる話は以前連載563回で説明した通りだ。

 A100はおそらくSamsungの7LPPとTSMCのN7の両方で試作を行ない、結果としてSamsungが落ちたと想像するが、ではGeForce RTX 3090に使われるGA102の場合はどうだろう?

 GA102は280億トランジスタを、628mm2のダイに押し込めている。もしこれをSamsungの7LPPで製造したら、トランジスタ密度は45%ほど引き上げられる計算になるが、このスケーリング通りに行かない部分もあるから、良くて35%くらいといったところで、ダイサイズは410mm2近辺か。

 A100が540億トランジスタでダイサイズが826mm2なので、この比率でいけば280億トランジスタでは428mm2ほどのダイになる計算だが、Samsungの7LPPはTSMCのN7より密度が高いので、410mm2近辺という推定はそう外れていないと思う。

前へ 1 2 3 4 次へ

カテゴリートップへ

この連載の記事

注目ニュース

ASCII倶楽部

プレミアムPC試用レポート

ピックアップ

ASCII.jp RSS2.0 配信中

ASCII.jpメール デジタルMac/iPodマガジン