精度を高めると演算が遅くなる
精度と速度のどちらを重視する?
ということでここまでが枕。冒頭の質問に戻ると、なぜこのように複数のフォーマットが用意されているのかというと、精度と速度のトレードオフがあるからである。
前述のように、単精度では有効数字7桁である。これは一般的な用途であれば十分であるが、科学技術計算などでは全然足りない。
特に長時間のシミュレーションをかける分野、たとえば流体解析や天候予測など、あるタイミングからの変化を短い時間刻みで延々と計算していくようなケースでは誤差の累積が多くなりすぎる。
先のパトリオットでも、カウンターを単精度の浮動小数点演算で実装した結果、100時間ほど経過すると0.34秒ほどずれ、これが致命的な結果を招いている。こうしたことを避ける一番簡単な方法は有効数字の桁数を増やすことである。
実は筆者も大学時代、ソリトンの変動をやはりシミュレーションで計算したことがあるのだが、シミュレーションが10万ステップを過ぎるあたりで単精度はもとより倍精度でも誤差が大きくなりすぎてしまい、4倍精度を使う羽目に陥ったことがある。精度が命の分野においては、単精度の浮動小数点は不十分とみなされることが多い。
ただ単精度と倍精度を比べると、ざっくり2~4倍ほど倍精度が遅くなる。これは扱うべきデータの量が倍になっているから、加算だと2倍で済むが乗算だと4倍遅い計算だ。
このあたりは実装の仕方にもよる部分で、昔のx86のように64bit演算に32bit演算器を使いまわす方式では、64bitの乗算=32bitの乗算×4+32bitの加算が必要になるので、5倍以上遅いことも珍しくなかった。
すると、「精度はそこそこでいいから、とりあえず高速に演算を」というニーズにはそぐわないことになる。これを極端に追求したのが3DグラフィックスのZバッファや、最近では機械学習の際に利用されるCNN(Convolutional Neural Network)の処理である。
CNNの場合、極端なことを言えば1bit(0か1)でもそこそこの精度が出せ、8bitで実用的な精度が確保できるとされる。そうした用途に23bitもの仮数部を持つ単精度浮動小数点を使うのは無駄以外の何者でもなく、実は半精度でもまだ無駄が多い。
NVIDIAがPascalで半精度(FP16)をサポートしてCNNを高速化したと言いつつ、Volta世代では8bitのTensolコアを搭載してさらに高性能にした、というあたりは精度よりも速度が重要だからということになる。
つまるところなんで単精度と倍精度が両方あるか?というと、両方のニーズがそれぞれあり、しかもそれが融合する見込みがないから、ということである。
この連載の記事
-
第803回
PC
トランジスタの当面の目標は電圧を0.3V未満に抑えつつ動作効率を5倍以上に引き上げること IEDM 2024レポート -
第802回
PC
16年間に渡り不可欠な存在であったISA Bus 消え去ったI/F史 -
第801回
PC
光インターコネクトで信号伝送の高速化を狙うインテル Hot Chips 2024で注目を浴びたオモシロCPU -
第800回
PC
プロセッサーから直接イーサネット信号を出せるBroadcomのCPO Hot Chips 2024で注目を浴びたオモシロCPU -
第799回
PC
世界最速に躍り出たスパコンEl Capitanはどうやって性能を改善したのか? 周波数は変えずにあるものを落とす -
第798回
PC
日本が開発したAIプロセッサーMN-Core 2 Hot Chips 2024で注目を浴びたオモシロCPU -
第797回
PC
わずか2年で完成させた韓国FuriosaAIのAIアクセラレーターRNGD Hot Chips 2024で注目を浴びたオモシロCPU -
第796回
PC
Metaが自社開発したAI推論用アクセラレーターMTIA v2 Hot Chips 2024で注目を浴びたオモシロCPU -
第795回
デジタル
AI性能を引き上げるInstinct MI325XとPensando Salina 400/Pollara 400がサーバーにインパクトをもたらす AMD CPUロードマップ -
第794回
デジタル
第5世代EPYCはMRDIMMをサポートしている? AMD CPUロードマップ -
第793回
PC
5nmの限界に早くもたどり着いてしまったWSE-3 Hot Chips 2024で注目を浴びたオモシロCPU - この連載の一覧へ