精度を高めると演算が遅くなる
精度と速度のどちらを重視する?
ということでここまでが枕。冒頭の質問に戻ると、なぜこのように複数のフォーマットが用意されているのかというと、精度と速度のトレードオフがあるからである。
前述のように、単精度では有効数字7桁である。これは一般的な用途であれば十分であるが、科学技術計算などでは全然足りない。
特に長時間のシミュレーションをかける分野、たとえば流体解析や天候予測など、あるタイミングからの変化を短い時間刻みで延々と計算していくようなケースでは誤差の累積が多くなりすぎる。
先のパトリオットでも、カウンターを単精度の浮動小数点演算で実装した結果、100時間ほど経過すると0.34秒ほどずれ、これが致命的な結果を招いている。こうしたことを避ける一番簡単な方法は有効数字の桁数を増やすことである。
実は筆者も大学時代、ソリトンの変動をやはりシミュレーションで計算したことがあるのだが、シミュレーションが10万ステップを過ぎるあたりで単精度はもとより倍精度でも誤差が大きくなりすぎてしまい、4倍精度を使う羽目に陥ったことがある。精度が命の分野においては、単精度の浮動小数点は不十分とみなされることが多い。
ただ単精度と倍精度を比べると、ざっくり2~4倍ほど倍精度が遅くなる。これは扱うべきデータの量が倍になっているから、加算だと2倍で済むが乗算だと4倍遅い計算だ。
このあたりは実装の仕方にもよる部分で、昔のx86のように64bit演算に32bit演算器を使いまわす方式では、64bitの乗算=32bitの乗算×4+32bitの加算が必要になるので、5倍以上遅いことも珍しくなかった。
すると、「精度はそこそこでいいから、とりあえず高速に演算を」というニーズにはそぐわないことになる。これを極端に追求したのが3DグラフィックスのZバッファや、最近では機械学習の際に利用されるCNN(Convolutional Neural Network)の処理である。
CNNの場合、極端なことを言えば1bit(0か1)でもそこそこの精度が出せ、8bitで実用的な精度が確保できるとされる。そうした用途に23bitもの仮数部を持つ単精度浮動小数点を使うのは無駄以外の何者でもなく、実は半精度でもまだ無駄が多い。
NVIDIAがPascalで半精度(FP16)をサポートしてCNNを高速化したと言いつつ、Volta世代では8bitのTensolコアを搭載してさらに高性能にした、というあたりは精度よりも速度が重要だからということになる。
つまるところなんで単精度と倍精度が両方あるか?というと、両方のニーズがそれぞれあり、しかもそれが融合する見込みがないから、ということである。

この連載の記事
-
第852回
PC
Google最新TPU「Ironwood」は前世代比4.7倍の性能向上かつ160Wの低消費電力で圧倒的省エネを実現 -
第851回
PC
Instinct MI400/MI500登場でAI/HPC向けGPUはどう変わる? CoWoS-L採用の詳細も判明 AMD GPUロードマップ -
第850回
デジタル
Zen 6+Zen 6c、そしてZen 7へ! EPYCは256コアへ向かう AMD CPUロードマップ -
第849回
PC
d-MatrixのAIプロセッサーCorsairはNVIDIA GB200に匹敵する性能を600Wの消費電力で実現 -
第848回
PC
消えたTofinoの残響 Intel IPU E2200がつなぐイーサネットの未来 -
第847回
PC
国産プロセッサーのPEZY-SC4sが消費電力わずか212Wで高効率99.2%を記録! 次世代省電力チップの決定版に王手 -
第846回
PC
Eコア288基の次世代Xeon「Clearwater Forest」に見る効率設計の極意 インテル CPUロードマップ -
第845回
PC
最大256MB共有キャッシュ対応で大規模処理も快適! Cuzcoが実現する高性能・拡張自在なRISC-Vプロセッサーの秘密 -
第844回
PC
耐量子暗号対応でセキュリティ強化! IBMのPower11が叶えた高信頼性と高速AI推論 -
第843回
PC
NVIDIAとインテルの協業発表によりGB10のCPUをx86に置き換えた新世代AIチップが登場する? -
第842回
PC
双方向8Tbps伝送の次世代光インターコネクト! AyarLabsのTeraPHYがもたらす革新的光通信の詳細 - この連載の一覧へ











