ロードマップでわかる!当世プロセッサー事情 第805回
1万5000以上のチップレットを数分で構築する新技法SLTは従来比で100倍以上早い! IEDM 2024レポート
2025年01月06日 12時00分更新
サイズの異なるチップレットを積層する新手法
Selective Layer Transfer
基礎となるのは、すでに利用されている技法である。2つのダイを接着するにあたり、あらかじめILRF(IR Laser Release Film)と呼ばれている非常に薄い(1μm未満)フィルムをウェハー製造時に挟み込んでおき、最後にドナーウェハーを分離したい際に赤外線を当てることで簡単に分離できる仕組みだ。
1aと1bを、Bonding Oxideが向き合うように貼り付ける。その後、赤外線レーザーをシリコン越しに照射すると、このILRFが消えてしまい、ドナーウェハー(作業用に利用しているシリコンウェハー)を簡単に分離できるというもの
オーストリアのEVG(EV Group)はこれを利用したIR LayerRelease Technologyと呼ばれる解決策を提供しているし、このフィルムについてもさまざまなものがすでに提供されている。これを利用して、サイズの異なるチップレットを積層しよう、というのが今回の内容だ。
まず一番左がチップレットを構築したウェハーであり、#1~#4の4種類のダイがある。真ん中がそのチップレットを載せるレシーバーウェハーで、ここでは#1のチップレットを載せる用意がなされている。
右が実際に載せる際の手順で、ドナーウェハーをひっくり返してレシーバーウェハーの上に被せる。この状態で、ドナーウェハーの上からダイ #1の底の部分にだけ赤外線レーザーを当てると、そこだけフィルムがなくなり、ダイ #1がレシーバーウェハーに残る。
あとはレシーバーウェハー #1を取り外し、同じように今度はダイ #2を別のウェハーに載せるという形で、チップレットを全部転送できることになる。
この方式のメリットはいくつかあり、当然スループットが早い(位置合わせの手間がチップレットの種類の数だけで済む)し、小さなチップレットであっても問題なく積層できる。
この後は、普通に誘電体を充填し、その上層にインターコネクトを積層することで完成である。これをもう少し応用すると、右側のように大規模なAIアクセラレーターを組み合わせたチップにしたり、あるいはIoT向けのチップをチップレットで作ったりすることも可能になる。
そもそも現在チップレットではあまり小さなサイズのダイを組み合わせることがない。これはダイサイズがある程度小さくなると、モノリシックで製造する方がトータルコストが安くなることに起因する。
ダイサイズを小型化することによる歩留まり向上や、最適なプロセスを使うことによるダイサイズの最小化に起因するコスト削減より、チップレットを構築、検査するための追加コストの方が大きくなるからである。
検査はともかくとして、製造に関しては今回の手法を使うと大幅に下げられる可能性が出てくる。実際、簡単な試算ではあるが、例えばIoTなどに向けたRFフロントエンドでは50%以上の面積削減が可能だし、AI向けアプリケーションプロセッサーでもSRAMをどんどん積層することで大幅に面積削減ができる。
前回も触れた検査コストをどうするのか? という問題は残る(この論文はそこには踏み込まず、あくまで製造工程にフォーカスしている)ものの、大幅にチップレット構築のコストを下げられる可能性があるというのは、よりチップレットの普及を促進する要因になるだろう。

この連載の記事
-
第852回
PC
Google最新TPU「Ironwood」は前世代比4.7倍の性能向上かつ160Wの低消費電力で圧倒的省エネを実現 -
第851回
PC
Instinct MI400/MI500登場でAI/HPC向けGPUはどう変わる? CoWoS-L採用の詳細も判明 AMD GPUロードマップ -
第850回
デジタル
Zen 6+Zen 6c、そしてZen 7へ! EPYCは256コアへ向かう AMD CPUロードマップ -
第849回
PC
d-MatrixのAIプロセッサーCorsairはNVIDIA GB200に匹敵する性能を600Wの消費電力で実現 -
第848回
PC
消えたTofinoの残響 Intel IPU E2200がつなぐイーサネットの未来 -
第847回
PC
国産プロセッサーのPEZY-SC4sが消費電力わずか212Wで高効率99.2%を記録! 次世代省電力チップの決定版に王手 -
第846回
PC
Eコア288基の次世代Xeon「Clearwater Forest」に見る効率設計の極意 インテル CPUロードマップ -
第845回
PC
最大256MB共有キャッシュ対応で大規模処理も快適! Cuzcoが実現する高性能・拡張自在なRISC-Vプロセッサーの秘密 -
第844回
PC
耐量子暗号対応でセキュリティ強化! IBMのPower11が叶えた高信頼性と高速AI推論 -
第843回
PC
NVIDIAとインテルの協業発表によりGB10のCPUをx86に置き換えた新世代AIチップが登場する? -
第842回
PC
双方向8Tbps伝送の次世代光インターコネクト! AyarLabsのTeraPHYがもたらす革新的光通信の詳細 - この連載の一覧へ

















