ロードマップでわかる!当世プロセッサー事情 第797回
わずか2年で完成させた韓国FuriosaAIのAIアクセラレーターRNGD Hot Chips 2024で注目を浴びたオモシロCPU
2024年11月11日 12時00分更新
テンソル縮約に特化した内部構造
さて第1世代のWarboyでは公開されなかったNPUの中身である。RNGDではTCP(Tensor Contraction Processor)と呼んでいるが、そもそも畳み込みニューラルネットワークなどでは計算の大半がテンソル縮約(Tensor Contraction)の計算に費やされている。
このテンソル縮約は要するに行列積(Matmul)であって、世の中に多く存在するテンソル演算用のアクセラレーター(例えばNVIDIAのGPUに搭載されるTensor Core)はこの行列積を高速に実行するための機構を搭載しているのだが、テンソル縮約≠行列積ではない、とFuriosaAIは主張する。
要するに扱うべき行列のサイズは、大抵の行列積演算ユニットのものよりはるかに大きいので、固定サイズの行列積演算ユニットを使うのは不効率、というわけだ。RNGDはこれをどうしたかというと、行列のサイズに合わせて行列積の計算に使うコンピュートユニットの数をダイナミックに変更しながら、目的のサイズの行列積を一発で行なえる、というところが異なるとする。
下の画像左側がそのRNGDの構成で、1個あたり64TOPS/32TFlopsの演算性能と32MBのSRAMを搭載するTensor Unitが8つ搭載されている。右側はその個々のTensor Unitの構成で、内部的には8つのプロセッサー・エレメントが配される。
ここでFetch/Commit Sequencerと、テンソル縮約を行うContraction EngineやVector Engine/Transpose Engine/Commit Engineの間にスイッチが入っているのがミソで、大規模な行列に対してすべてのContraction Engine類が協調する形で処理できるようになっている。また個々のTensor Unitの間は非常に高速なNoCでつながっており、HBM3の帯域をすべてのTensor Unitで使い切れるような構成になっている。

この連載の記事
-
第852回
PC
Google最新TPU「Ironwood」は前世代比4.7倍の性能向上かつ160Wの低消費電力で圧倒的省エネを実現 -
第851回
PC
Instinct MI400/MI500登場でAI/HPC向けGPUはどう変わる? CoWoS-L採用の詳細も判明 AMD GPUロードマップ -
第850回
デジタル
Zen 6+Zen 6c、そしてZen 7へ! EPYCは256コアへ向かう AMD CPUロードマップ -
第849回
PC
d-MatrixのAIプロセッサーCorsairはNVIDIA GB200に匹敵する性能を600Wの消費電力で実現 -
第848回
PC
消えたTofinoの残響 Intel IPU E2200がつなぐイーサネットの未来 -
第847回
PC
国産プロセッサーのPEZY-SC4sが消費電力わずか212Wで高効率99.2%を記録! 次世代省電力チップの決定版に王手 -
第846回
PC
Eコア288基の次世代Xeon「Clearwater Forest」に見る効率設計の極意 インテル CPUロードマップ -
第845回
PC
最大256MB共有キャッシュ対応で大規模処理も快適! Cuzcoが実現する高性能・拡張自在なRISC-Vプロセッサーの秘密 -
第844回
PC
耐量子暗号対応でセキュリティ強化! IBMのPower11が叶えた高信頼性と高速AI推論 -
第843回
PC
NVIDIAとインテルの協業発表によりGB10のCPUをx86に置き換えた新世代AIチップが登場する? -
第842回
PC
双方向8Tbps伝送の次世代光インターコネクト! AyarLabsのTeraPHYがもたらす革新的光通信の詳細 - この連載の一覧へ
















