Foveros Directの第2世代は
Bump Pitchが9μmになる
次が(4)のFoveros Directについて。連載第682回では「9μmピッチかどうかは将来公開する」という話だったが、今回ついにこれが9μmであることが明示された。
ちなみにこの先に関して言えば、Foverosは微妙だがFoveros Directは5μm未満のBump Pitchを目指していることも今回示された格好だ。
ガラスベースのSubstrateと
Co-Package Opticsが提供予定
最後が(5)の次世代インターコネクト向け。これは要するに、より高速な信号を通すための仕組みである。現在ではPCIeやUCIeでもだいたい32Gbpsあたりが信号速度のピークであり、GDDRも20Gbpsくらいであるが、すでにイーサネットの世界ではレーンあたり100Gbps(56G PAM-4)を超えて200Gbps(112G PAM-4)に対応したチップがサンプル出荷を開始しており、さらにこの先の400Gbps(224G PAM-4)も視野に入り始めた。
ちなみにこれは1レーンあたりの速度である。PCIeもPCIe 6.0ではレーンあたり64Gbps(32G PAM-4)、PCIe 7.0は128Gbps(64G PAM-4)になることが決まっており、より高速な信号をハンドリングする必要がある。
こうした高速な電気信号を扱うのに、従来の基板材料では損失が大きすぎて到達距離が稼げないということで、ガラスベースの基板は従来からいろいろ検討されてきているのだが、ここにきてインテルがパッケージオプションでガラス基板に言及し始めた、というのはもう他に方法がないということもあるが、ガラス基板にまつわる問題(温度変化に起因する歪がLSIチップと異なることによる問題や強度、製造方式など)にある程度目途が立った、ということかもしれない。
これに絡んでくるのがCo-Package Opticsである。イーサネットそのもので言えば、現状標準化されている銅配線ベースの最大速度は100Gbps(ただしド太い同軸ケーブルを複数使い、配線距離も数m)、CAT-8を使う配線では40Gbps(40GBASE-T)が一番最高速であり、それ以上高速なイーサネットはすべて光ファイバーを使う形になる。この場合のトランシーバーの構造が図3である。
MACはデジタル電気信号の形でイーサネットの入出力を行ない、これをアナログに変換した上で光信号の形で入出力するのがPHYである。この2つは基板上でつながることになるので、ここの信号の高速化のためにガラス基板を使おう、という話である。
実際大規模なスイッチなどでは、こうした構造になる可能性が非常に高い。ただここで図4のようにMACとPHYを同一パッケージ内に押し込めれば、もっと効率が良くなる。
ただMACまでは通常のCMOSプロセスで製造されており、一方PHYの方にはレーザーLEDやフォトディテクターなど通常のCMOSプロセスでは製造できないコンポーネントが含まれる。したがってPHYをCMOSプロセスと親和性のある方法で製造する必要がある。
Silicon Opticsと呼ばれるこの新技術をインテルはもうかれこれ20年くらい手掛けており、連載699回でも触れたように、2022年のIEDMの基調講演の中で2025年までにPluggable Opticsのソリューションを提供する予定であることが公表されている。
今回のCo-Package OpticsはこのPluggable Opticsのソリューションのためのものである。上の図に戻ると、PHY/MACが一体化したチップに光コネクターが接続されているが、現在業界には標準的な「LSIに直接接続するための」光コネクター/レセプタクルというものが存在しない。
これは精度(なにしろ光ファイバーが細いので、きちんとLED/フォトディテクターと位置合わせができないと効率が急激に落ちて通信不能になる)など強度の点で難易度が高く、けっこうがっちりした金属製のコネクター/レセプタクルが利用されているためであり、LSIチップの10倍くらいの厚みがあったりするからまるで適さない。
今回インテルが発表したのは、やや厚みのあるLSIに直接接続できるようなコネクター/レセプタクルである。こちらのサンプルは今年後半に詳細が明らかにされるようだ。
ということで、インテルのパッケージ技術は相変わらず進歩を続けており、今後のプロセスの進化にも対応できるようになっている、という話であってそのことそのものは良いのだが、問題はなぜこの時期にこんな話を突然したのか? である。これがなにかの目くらまし、という話でなければいいのだが……。

この連載の記事
-
第852回
PC
Google最新TPU「Ironwood」は前世代比4.7倍の性能向上かつ160Wの低消費電力で圧倒的省エネを実現 -
第851回
PC
Instinct MI400/MI500登場でAI/HPC向けGPUはどう変わる? CoWoS-L採用の詳細も判明 AMD GPUロードマップ -
第850回
デジタル
Zen 6+Zen 6c、そしてZen 7へ! EPYCは256コアへ向かう AMD CPUロードマップ -
第849回
PC
d-MatrixのAIプロセッサーCorsairはNVIDIA GB200に匹敵する性能を600Wの消費電力で実現 -
第848回
PC
消えたTofinoの残響 Intel IPU E2200がつなぐイーサネットの未来 -
第847回
PC
国産プロセッサーのPEZY-SC4sが消費電力わずか212Wで高効率99.2%を記録! 次世代省電力チップの決定版に王手 -
第846回
PC
Eコア288基の次世代Xeon「Clearwater Forest」に見る効率設計の極意 インテル CPUロードマップ -
第845回
PC
最大256MB共有キャッシュ対応で大規模処理も快適! Cuzcoが実現する高性能・拡張自在なRISC-Vプロセッサーの秘密 -
第844回
PC
耐量子暗号対応でセキュリティ強化! IBMのPower11が叶えた高信頼性と高速AI推論 -
第843回
PC
NVIDIAとインテルの協業発表によりGB10のCPUをx86に置き換えた新世代AIチップが登場する? -
第842回
PC
双方向8Tbps伝送の次世代光インターコネクト! AyarLabsのTeraPHYがもたらす革新的光通信の詳細 - この連載の一覧へ
















