上がらないIPC
さてそのパイプラインに絡む話。記事冒頭の画像でSingle Thread Upliftが15%以上である、と説明された。「たった?」というのが次の議論である。スライドの脚注によれば、これはCineBench R23のシングルスレッドテストでの結果であり、16コアのRyzen 7000の試作品と、Ryzen 9 5950Xを比較しての数字である。
シングルスレッドテストの場合、処理時間がかなりかかるので、インテルにしてもAMDにしてもMax Turbo/Max Boostで動作するのは最初の1分程度であり、すぐにBaseに戻ることになる。ということは、ここでの15%という数字は、Ryzen 9 5950XとRyzen 7000の試作品の、それぞれベースクロックに近いところでの性能比較と考えていいかと思う。
Ryzen 9 5950Xのベースクロックは3.4GHz。Ryzen 7000シリーズはもちろん不明だが、例えば仮にベースクロックが4GHzだとすると、それだけで性能差は17.6%に達する計算である。もちろんIPCが同一、という前提の計算だが、さすがに下がることはあり得ないだろう。
ということは、15%という性能向上のほとんどが動作周波数の向上で占められることになってしまう。この性能向上について、基調講演の20:05あたりからLisa Su CEOは明確に「IPCと動作周波数の向上の両方で実現した」としており、ということはベースクロックはもっと低いことが考えられる。数字で示すと以下のようになる。
| ベースクロックによる性能の向上率 | ||||||
|---|---|---|---|---|---|---|
| ベースクロック | 向上率 | |||||
| 3.5GHz | 2.9% | |||||
| 3.6GHz | 5.9% | |||||
| 3.7GHz | 8.8% | |||||
| 3.8GHz | 11.8% | |||||
| 3.9GHz | 14.7% | |||||
| 4.0GHz | 17.6% | |||||
こうなると、3.6~3.7GHzあたりがベースクロックというのがありそうな感じだ。ということはIPCによる増分は10%に満たない程度になる。
これは逆に言えば、Zen 4のパイプラインは従来同様4命令同時解釈で、発行の方が8命令を9命令にした程度なのかもしれない。5命令解釈、10命令発行だとするとあまりにIPCの上がり方が少ないからだ。
ただこれは別の疑問につながる。だとしたらなぜこんなにダイサイズが巨大なのか? である。5命令解釈/10命令発行なら、それなりにパイプラインの規模が拡大する。この分野で言えばポラックの法則が有名だ。これは性能は回路規模の平方根に比例するというものだ。
今回で言えば、Zen 3を基準にすると、もしZen 4が5命令発行/10命令実行だとすると、IPCはラフに25%向上することが期待できる。その一方で回路規模は56%増大する、というものだ。だからIPCが25%向上するなら、ダイサイズも相応に巨大化することに不思議はない。逆説的に言えば、この程度のIPCでZen 3と変わらないダイサイズはどうしてもつじつまが合わないことになる。
可能性としてあるのは、なんらかの理由でCineBench R23のシングルスレッドテストでは性能が上がり難い(もしくは意図的に動作周波数を低く抑えている)というあたりだろうか。まだ試作品(そもそも基調講演後半の5.5GHz駆動を達成したものと同一のダイかどうかも不明である)だからこのあたりはどうにでもなる。
そこまでして性能を隠す意味があるのか? といわれると困るのだが、他に思いつかないというのが正直なところだ。おそらくZen 4の詳細は出荷直前(9月あたりだろうか?)まで公開されないと思われる(8月のHotChipsは今回はZen3+止まりな気がする)。そこまでの間は、このミスマッチの謎は解けそうにない。
5.5GHz駆動と170WのTDP
基調講演後半ではGhostwire: Tokyoを実施しながら、ピークで5.5GHz超えを達成しているが、これに先立ってAM5が170Wまでの供給能力を持つことが明らかにされている。
実はこの170Wに関し、Tom's Hardwareが「この170Wという数字は正確でない」というニュースを報じた。この件について筆者もAMDに問い合わせた結果、以下のことが確認された。
Socket AM5では、TDPが170Wまでであるが、それとは別にPPT(Package Power Tracking)が230Wまでサポートされる。PPTはTDP×1.35となっており、なのでTDPが170WのCPUはピークで230Wまで許容されることになる。インテル風に言えばPL1が170W、PL2が230Wとなる形だ。こちらもAlder Lakeに引けを取らない(?)発熱ぶりが期待できてしまうのは、やや残念である。

この連載の記事
-
第852回
PC
Google最新TPU「Ironwood」は前世代比4.7倍の性能向上かつ160Wの低消費電力で圧倒的省エネを実現 -
第851回
PC
Instinct MI400/MI500登場でAI/HPC向けGPUはどう変わる? CoWoS-L採用の詳細も判明 AMD GPUロードマップ -
第850回
デジタル
Zen 6+Zen 6c、そしてZen 7へ! EPYCは256コアへ向かう AMD CPUロードマップ -
第849回
PC
d-MatrixのAIプロセッサーCorsairはNVIDIA GB200に匹敵する性能を600Wの消費電力で実現 -
第848回
PC
消えたTofinoの残響 Intel IPU E2200がつなぐイーサネットの未来 -
第847回
PC
国産プロセッサーのPEZY-SC4sが消費電力わずか212Wで高効率99.2%を記録! 次世代省電力チップの決定版に王手 -
第846回
PC
Eコア288基の次世代Xeon「Clearwater Forest」に見る効率設計の極意 インテル CPUロードマップ -
第845回
PC
最大256MB共有キャッシュ対応で大規模処理も快適! Cuzcoが実現する高性能・拡張自在なRISC-Vプロセッサーの秘密 -
第844回
PC
耐量子暗号対応でセキュリティ強化! IBMのPower11が叶えた高信頼性と高速AI推論 -
第843回
PC
NVIDIAとインテルの協業発表によりGB10のCPUをx86に置き換えた新世代AIチップが登場する? -
第842回
PC
双方向8Tbps伝送の次世代光インターコネクト! AyarLabsのTeraPHYがもたらす革新的光通信の詳細 - この連載の一覧へ



