ファウンダリーロードマップシリーズの最後はインテルで締めたい。インテルは今年3月28日、Tecnhnology and Manufactureing Dayというイベントを米国で開催、同社のプロセス技術の最新動向について説明した。このイベントのスライドから、かいつまんで動向を追っていきたい。
14nm++は同一消費電力なら
性能を25%ほど改善できる
まず14nm世代について説明しよう。以前も紹介したが、インテルは14nmに続き14nm+と14nm++の2つの派生型をリリースすることを決めており、Kaby Lakeには14nm+が利用されている。その14nm+と14nm++についての説明が今回あった。
この図、横軸は登場時期であるが、縦軸のほうはトランジスタの性能(左)とトランジスタの消費電力(右)で、14nm+/14nm++は消費電力そのものは14nmと同等だが性能が上がっており、特に14nm++は最初の10nmを上回る性能になっている、としている。
その14nm+について。下の画像はNMOSとPMOSの動作特性をまとめたもので、同じリークなら駆動電流が平均12%ほど向上しているという。
これが14nm++になると、14nm比で23~24%の改善になるという。ただしよく見ると、14nmと14nm+は70ppなのに対し、インテルの14++は84ppとある。
これはなにかというと、Gate Pitchである。Gate PitchはCPP(Contacted Poly Pitch)などと呼ぶことも多く、CPPとFin Pitchの値から擬似的にプロセスノードの数字が算出できる、という話は連載391回でも紹介した。
話を戻すと、14nm/14nm+については、上の画像に示されるようにGate Pitchは70nmのままで実装されるが、14nm++に関してはGate Pitchを再び84nmに広げる。
実のところ、当初は14nm+がこの84nm Pitchになる模様だったが、いろいろ間に合わないということでこれを14nm++という形で後送りにして、とりあえずGate Pitchを変更しないまま部分的に性能を改善したのが14nm+ということになったらしい。
もちろんこうなると、物理実装に関しては基本的な寸法が変わってしまうので、再設計になってしまうことになる。実はKaby Lakeも、当初は84nmの14nm+向けに設計を始めたものの、これが14nm++にずれたことで名前をCoffee Lakeに更新。一方既存のSkylakeを14nm+で製造したものが新Kaby Lakeということになるらしい。このあたりは次回また説明したい。
ちなみに下の画像はその競合プロセスとの性能比較で、14nm世代の場合はTSMCの16FF+や14LPPと同等よりやや劣る程度のスペックだったのが、14nm+で大きく改善できたとしている。
結果として、14nmと比較した場合、14nm++では同一消費電力なら性能を25%ほど改善でき、同一周波数なら消費電力を52%下げられるとしている。ただし上にも書いた通り、既存の設計そのままで14nm++に移行することはできず、物理設計のやり直しになるのは避けられない。
また14nm++世代では、少なくともGate Pitchはむしろ増える方向にある。他のジオメトリーがどうなっているかは開示されていないが、少なくともトランジスタサイズは良くて14nm+ととんとん、おそらくは増えるだろうと思われる。これはそのままエリアサイズの増大につながる。そうなるとインテルにとって、あまりおいしい選択肢ではない。
デスクトップCPUは6コアに、モバイルは4コアにそれぞれコア数を増やすうえ、GPUに関してはまだ全然性能が足りていないため、よりシェーダー数を増やす必要があり、これはそのままエリアサイズ増大につながる。したがって、インテルとしては14nm++を利用する自社製品はCoffee Lakeのみに留めて、むしろファウンダリーオプションとして提供する方に注力すると思われる。
現状、14nm世代の製品は9月と言われているCoffee Lakeが最後になるようで、Cannon LakeやIce Lakeは10nmであることが公式に発表されているし、その先も14nmに戻る気配はない。
もっとも14nm世代は業界的にも比較的長く利用される(Long-lived Node)と認知されており、インテルも14nm++をそうした用途向けに展開していきたいのだろう。

この連載の記事
-
第852回
PC
Google最新TPU「Ironwood」は前世代比4.7倍の性能向上かつ160Wの低消費電力で圧倒的省エネを実現 -
第851回
PC
Instinct MI400/MI500登場でAI/HPC向けGPUはどう変わる? CoWoS-L採用の詳細も判明 AMD GPUロードマップ -
第850回
デジタル
Zen 6+Zen 6c、そしてZen 7へ! EPYCは256コアへ向かう AMD CPUロードマップ -
第849回
PC
d-MatrixのAIプロセッサーCorsairはNVIDIA GB200に匹敵する性能を600Wの消費電力で実現 -
第848回
PC
消えたTofinoの残響 Intel IPU E2200がつなぐイーサネットの未来 -
第847回
PC
国産プロセッサーのPEZY-SC4sが消費電力わずか212Wで高効率99.2%を記録! 次世代省電力チップの決定版に王手 -
第846回
PC
Eコア288基の次世代Xeon「Clearwater Forest」に見る効率設計の極意 インテル CPUロードマップ -
第845回
PC
最大256MB共有キャッシュ対応で大規模処理も快適! Cuzcoが実現する高性能・拡張自在なRISC-Vプロセッサーの秘密 -
第844回
PC
耐量子暗号対応でセキュリティ強化! IBMのPower11が叶えた高信頼性と高速AI推論 -
第843回
PC
NVIDIAとインテルの協業発表によりGB10のCPUをx86に置き換えた新世代AIチップが登場する? -
第842回
PC
双方向8Tbps伝送の次世代光インターコネクト! AyarLabsのTeraPHYがもたらす革新的光通信の詳細 - この連載の一覧へ











