もうスーパーコンピューターの系譜だけで57回目になるわけだが、1980~1990年代というのはある意味、スーパーコンピューターに向けて新しいアイディアや実装がいろいろ試みられ、「一発当ててやろう」的なアーキテクチャーが頻出した時期でもあった。
これはスーパーコンピューターに限った話ではなく、組み込み向けプロセッサーでも2000年代前半までは、なにか無茶なアーキテクチャーが毎年のように発表されて消えていくという感じであった。今回解説するACRI(Advanced Computer Research Institute)もそんな1つである。
スーパースカラーの問題点を解消する
Decoupled Architecture
ACRIは仏BullのCEOだったJacques Stern氏が立ち上げた企業である。正確に言えば、彼が立ち上げたのはStern Computerという企業で、このStern Computerの開発拠点としてリヨンに置かれたのがACRIである。1988年の時点でこのACRIには150名ほどが働いていたらしい。
ACRIが開発しようとしたのがACRI-1であるが、ACRI-1はデカップルド・アーキテクチャーを利用したシステムである。デカップルド・アーキテクチャーとは、スーパースカラーをさらにアグレッシブにしたものと考えれば良い。
スーパースカラーというのは、同時に複数個の命令をデコードし、これを並行して実行させることで性能を高めようという発想であり、Out-of-Orderとあわせて最近のプロセッサーでは広く利用されているのはご存知の通り。
ただし、より高い性能を求めようとすると浮動小数点演算のパイプラインを多数搭載する必要があり、バランスが悪くなる。
というのは、並行して処理ができる実行段はともかく、その前のデコード段は頭から順番通りに動くため、例えば3つのパイプラインを並行して常時動作させようとしたら、デコード段は3倍速で動くか、3倍の帯域を持つように構成しなければいけない。
これはパイプラインを増やせば増やすほど性能を上げなければいけないので、構築がどんどん難しくなっていく。
この問題の解決策として1982年にデカップルド・アーキテクチャーという概念を提唱したのはJames E. Smith博士(現ウィスコンシン大名誉教授)である。
DAE(Decoupled Access/Execute)というのは、下の画像のような構成で、命令実行を行なうユニット(Execute Processor)とメモリーI/Oを行なうプロセッサー(Access Processor)を分離し、間をキューでつなぐというものだ。
画像の出典は“DECOUPLED ACCESS/EXECUTE COMPUTER ARCHITECTURES”。
この時点での発想は、メモリーアクセスを別プロセッサーに分離することで、Execute Processorはレイテンシーを気にせずに高速に処理ができるようになる、という発想である。
論文の中では例として、Lawrence Livermore Loop(ローレンス・リバモア国立研究所のFrancis H. McMahon氏が作成したパラレルコンピューターシステム用ベンチマーク)の解釈を示した。
画像の出典は“DECOUPLED ACCESS/EXECUTE COMPUTER ARCHITECTURES”。
上の画像の左上(Fig.2a)が元のFortranのコード、左下(Fig.2b)がこれをCRAY-1風に解釈した場合のアセンブラコード、右(Fig.2c)がDAEを利用した場合のコードとなる。DAEを利用することで、Execute Processorははるかに少ない処理量で実行できることが示されているのがわかる。
Smith博士はその後1985年に“A Simulation Study of Decoupled Architecture Computers”という論文を上梓するが、ここではもう少し進化したモデルを利用して、性能の評価をしている。
画像の出典は“A Simulation Study of Decoupled Architecture Computers”。
今から思えばこのデカップルド・アーキテクチャーというのは、AMDのAPUに近い概念であって、もっと言うならヘテロジニアス・マルチプロセッサーを1つのCPUに収める(ワンチップというよりはワンボードもしくはワンユニット)といった考え方に近いところだ。
デカップルド・アーキテクチャーを利用することで、当時このスーパーコンピューター市場で支配的だったIBMやCRAY、富士通などの勢力に伍するシステムを構築しよう、というのがACRIの発想である。

この連載の記事
-
第852回
PC
Google最新TPU「Ironwood」は前世代比4.7倍の性能向上かつ160Wの低消費電力で圧倒的省エネを実現 -
第851回
PC
Instinct MI400/MI500登場でAI/HPC向けGPUはどう変わる? CoWoS-L採用の詳細も判明 AMD GPUロードマップ -
第850回
デジタル
Zen 6+Zen 6c、そしてZen 7へ! EPYCは256コアへ向かう AMD CPUロードマップ -
第849回
PC
d-MatrixのAIプロセッサーCorsairはNVIDIA GB200に匹敵する性能を600Wの消費電力で実現 -
第848回
PC
消えたTofinoの残響 Intel IPU E2200がつなぐイーサネットの未来 -
第847回
PC
国産プロセッサーのPEZY-SC4sが消費電力わずか212Wで高効率99.2%を記録! 次世代省電力チップの決定版に王手 -
第846回
PC
Eコア288基の次世代Xeon「Clearwater Forest」に見る効率設計の極意 インテル CPUロードマップ -
第845回
PC
最大256MB共有キャッシュ対応で大規模処理も快適! Cuzcoが実現する高性能・拡張自在なRISC-Vプロセッサーの秘密 -
第844回
PC
耐量子暗号対応でセキュリティ強化! IBMのPower11が叶えた高信頼性と高速AI推論 -
第843回
PC
NVIDIAとインテルの協業発表によりGB10のCPUをx86に置き換えた新世代AIチップが登場する? -
第842回
PC
双方向8Tbps伝送の次世代光インターコネクト! AyarLabsのTeraPHYがもたらす革新的光通信の詳細 - この連載の一覧へ











