ワンチップに複数コアを組み込む作戦で
Larrabeeを活用
結局インテルはGPUの代替としてLarrabeeを利用することを放棄、既存のIntel GMAアーキテクチャーを引き続き改良し続けることにした。これは妥当というか、適切な戦略であったと思う。ただそれはそれとして、Larrabeeのアーキテクチャーそのものはまだ利用できる、とインテル自身は考えていた。それはまさしくHPC向けの用途である。
もともとインテルはMPP(Massive Parallel Processing:超並列)に広く精通していた。その最初のものはiPSCで、これにParagonが続き、ASCI Redにつながることになる。
これらのシステムは、いずれも汎用のx86プロセッサーを密結合する形でシステムを構築しており、当然その分システムのサイズや消費電力は大きくなっている。ところが、Larrabeeのようにワンチップの中に複数のx86コアが統合される構成なら、1個1個の性能は多少低くても、トータルとしての性能/消費電力比を高めることで、結果的に高性能なシステムを構築可能になる。
ASCI Redを最後に、大規模なHPC向けシステムをインテルは開発・納入していないが、研究開発チームは継続してこうした研究を続けてきた。その一例が2006年のIDFで発表された80コアのチップである。このコアはx86とは互換性のない独自のものだが、TFLOPSクラスの性能と、3.1GHz動作の場合で10GFLOPS/Wの性能を実現できることを発表している。
ISSCC 2007ではもうすこし突っ込んだ説明があり、1GHz動作で0.32TFLOPS、3.1GHzで1TFLOPS、ピークは5.67GHz駆動で1.8TFLOPSの性能になることが明らかにされている。これはあくまでも試作であって、同じ仕組みがLarrabeeに適用できるわけではないが、ワンチップに複数コアを組み込むMany Coreの方向性とLarrabeeは相性が良い、と判断したようだ。
この結果インテルはLarrabeeの方向性を大きく変更し、HPCに向けたMany Coreのプラットフォームとして活用することにする。とは言え、この時点では大きく2つの要素が欠けていた。1つは絶対性能で、なにしろ16コアしかないため、いくら16wayのSIMDエンジンでもピーク性能はそう高くないし、実効性能はさらに見劣りする。
もう1つは適切なプログラミング環境である。NVIDIAのCUDA、あるいはAMDのBrook+に相当するものを、この時点でインテルはLarrabee向けに提供できていなかった。そこでここから猛然とインテルは欠けているパーツを埋めるべく奔走し始める。続きは次回説明しよう。

この連載の記事
-
第852回
PC
Google最新TPU「Ironwood」は前世代比4.7倍の性能向上かつ160Wの低消費電力で圧倒的省エネを実現 -
第851回
PC
Instinct MI400/MI500登場でAI/HPC向けGPUはどう変わる? CoWoS-L採用の詳細も判明 AMD GPUロードマップ -
第850回
デジタル
Zen 6+Zen 6c、そしてZen 7へ! EPYCは256コアへ向かう AMD CPUロードマップ -
第849回
PC
d-MatrixのAIプロセッサーCorsairはNVIDIA GB200に匹敵する性能を600Wの消費電力で実現 -
第848回
PC
消えたTofinoの残響 Intel IPU E2200がつなぐイーサネットの未来 -
第847回
PC
国産プロセッサーのPEZY-SC4sが消費電力わずか212Wで高効率99.2%を記録! 次世代省電力チップの決定版に王手 -
第846回
PC
Eコア288基の次世代Xeon「Clearwater Forest」に見る効率設計の極意 インテル CPUロードマップ -
第845回
PC
最大256MB共有キャッシュ対応で大規模処理も快適! Cuzcoが実現する高性能・拡張自在なRISC-Vプロセッサーの秘密 -
第844回
PC
耐量子暗号対応でセキュリティ強化! IBMのPower11が叶えた高信頼性と高速AI推論 -
第843回
PC
NVIDIAとインテルの協業発表によりGB10のCPUをx86に置き換えた新世代AIチップが登場する? -
第842回
PC
双方向8Tbps伝送の次世代光インターコネクト! AyarLabsのTeraPHYがもたらす革新的光通信の詳細 - この連載の一覧へ











